示例#1
0
def test_dout_queue_lvl_2_cosim(cosim_cls):
    verif(drv(t=Queue[Uint[4], 3],
              seq=[[[list(range(2)) for _ in range(2)] for _ in range(2)]]),
          f=flatten(sim_cls=cosim_cls),
          ref=flatten(name='ref_model'))

    sim()
示例#2
0
def test_cosim(cosim_cls):
    seq = list(range(1, 10))
    directed(drv(t=Uint[16], seq=seq) | delay_rng(0, 2),
             f=decouple(sim_cls=cosim_cls),
             ref=seq,
             delays=[delay_rng(0, 2)])

    sim()
示例#3
0
def test_dout_queue_lvl_2_no_datacosim(cosim_cls):
    verif(drv(t=Queue[Unit, 3],
              seq=[[[[Unit() for _ in range(2)] for _ in range(2)]
                    for _ in range(2)]]),
          f=flatten(sim_cls=cosim_cls),
          ref=flatten(name='ref_model'))

    sim()
示例#4
0
def test_two_alter_outs_const():
    @gear
    async def test() -> (Uint[4], Uint[4]):
        yield 0, None
        yield None, 1

    directed(f=test(__sim__='verilator'), ref=[[0, 0], [1, 1]])

    sim(timeout=4)
示例#5
0
def test_basic(tmpdir, sim_cls):
    tin = Tuple['a':Uint[1], 'b':Uint[2], 'c':Uint[3], 'd':Uint[4]]

    tout = Tuple['a':Uint[1], 'c':Uint[3]]

    directed(drv(t=tin, seq=[(1, 2, 3, 4)] * 3),
             f=repack(t=tout, sim_cls=sim_cls),
             ref=[(1, 3)] * 3)

    sim(tmpdir)
示例#6
0
def test_channeling():
    @gear
    def dut(din):
        return din \
            | bc_sig(sigmap={'dout_sig': 'sig'}) \
            | add_wrap(sigmap={'din_sig': 'sig'})

    directed(drv(t=Uint[16], seq=list(range(3))),
             f=dut(sim_cls=SimVerilated),
             ref=(list(range(0, 6, 2))))

    sim()
示例#7
0
def test_two_alter_outs():
    @gear(hdl={'compile': True})
    async def test(din) -> (Uint[4], Uint[4]):
        async with din as d:
            yield d, None

        async with din as d:
            yield None, d

    directed(drv(t=Uint[4], seq=[0, 1, 0, 1]), f=test(__sim__='verilator'), ref=[[0, 0], [1, 1]])

    sim(timeout=4)
示例#8
0
def test_name_map(tmpdir, sim_cls):
    tin = Tuple['a':Uint[1], 'b':Uint[2], 'c':Uint[3], 'd':Uint[4]]

    tout = Tuple['f':Uint[1], 'g':Uint[3]]

    directed(drv(t=tin, seq=[(1, 2, 3, 4)] * 3),
             f=repack(t=tout, sim_cls=sim_cls, name_map={
                 'f': 'a',
                 'g': 'c'
             }),
             ref=[(1, 3)] * 3)

    sim(tmpdir)
示例#9
0
def test_basic():
    seq = [(0, 0x1), (1, 0x2), (2, 0x4), (3, 0x3), (4, 0x6), (5, 0x5),
           (6, 0x7), (7, 0x0)]
    ref = [
        [0, 3, 5, 6],
        [1, 3, 4, 6],
        [2, 4, 5, 6],
    ]

    directed(drv(t=Tuple[Uint[8], Uint[3]], seq=seq),
             f=dispatch(__sim__='verilator'),
             delays=[delay_rng(0, 3) for _ in range(3)],
             ref=ref)

    sim()
示例#10
0
def run_matrix(impl, mat1, mat2, cols_per_row, col_only: bool = False):
    reg['trace/level'] = 0
    reg['gear/memoize'] = False
    # Add one more dimension to the matrix to support input type for design
    mat1 = mat1.reshape(1, mat1.shape[0], mat1.shape[1])
    mat2 = mat2.reshape(mat2.shape[0], 1, mat2.shape[1])

    # configuration driving
    cfg = create_valid_cfg(cols_per_row, mat1)
    cfg_drv = drv(t=TCfg, seq=[cfg])

    row_t = Queue[Array[Int[16], cfg['num_cols']]]
    mat1_drv = drv(t=Queue[row_t], seq=[mat1])
    res_list = []

    if col_only:
        # remove the extra dimension that was previously added since colum mult accepts
        mat2 = np.squeeze(mat2)
        # for columtn multiplication second operand needs to be only one row
        mat2_drv = drv(t=row_t, seq=[mat2])
        res = column_multiplication(cfg_drv, mat1_drv, mat2_drv)
        # column multiplication returns result in a queue so flatening makes it a regular list
        collect(res | flatten, result=res_list)
        if impl == 'hw':
            cosim('/column_multiplication',
                  'verilator',
                  outdir='/tmp/column_multiplication',
                  rebuild=True,
                  timeout=100)
    else:
        mat2_drv = drv(t=Queue[row_t], seq=[mat2])
        res = matrix_multiplication(cfg_drv,
                                    mat1_drv,
                                    mat2_drv,
                                    cols_per_row=cols_per_row)
        collect(res, result=res_list)
        if impl == 'hw':
            cosim('/matrix_multiplication',
                  'verilator',
                  outdir='/tmp/matrix_multiplication',
                  rebuild=True,
                  timeout=100)
    try:
        sim()
        # convert PG results into regular 'int'

        if col_only:
            pg_res = [int(el) for el in res_list]
        else:
            pg_res = [int(el) for row_chunk in res_list for el in row_chunk]

        # calculate reference NumPy resutls
        np_res = np.dot(np.squeeze(mat1), np.transpose(mat2.squeeze()))
        # reshape PG results into the same format as
        pg_res = np.array(pg_res).reshape(np_res.shape)
        sim_assert(
            np.equal(pg_res, np_res).all(), "Error in compatring results")
        log.info("\033[92m //==== PASS ====// \033[90m")

    except:
        # printing stack trace
        traceback.print_exc()
        log.info("\033[91m //==== FAILED ====// \033[90m")
def matrix_ops_single():
    ########################## DESIGN CONTROLS ##########################
    num_cols = 8
    num_rows = 6  # HINT suppoerted all dimesitions > 1
    cols_per_row = 2  # HINT suported values that are divisible with num_colls
    ########################### TEST CONTROLS ###########################
    sv_gen = 1
    ###########################################################################
    # set either random or custom seed
    seed = random.randrange(0, 2**32, 1)
    # seed = 1379896999

    # """Unify all seeds"""
    log.info(f"Random SEED: {seed}")
    set_seed(seed)

    ## input randomization
    mat1 = np.random.randint(128, size=(num_rows, num_cols))
    mat2 = np.random.randint(128, size=(num_rows, num_cols))
    mat1 = np.ones((num_rows, num_cols))
    mat2 = np.ones((num_rows, num_cols))

    # input the constatn value optionally
    # mat1 = np.empty((num_rows, num_cols))
    # mat2 = np.empty((num_rows, num_cols))
    # # fill the matrix with the same value
    # mat1.fill(32767)
    # mat2.fill(-32768)

    print("Inputs: ")
    print(type(mat1))
    print(mat1)
    print(type(mat2))
    print(mat2)

    reg['trace/level'] = 0
    reg['gear/memoize'] = False

    reg['debug/trace'] = ['*']
    reg['debug/webviewer'] = True
    res_list = []

    cfg = {
        "cols_per_row": cols_per_row,
        "num_rows": num_rows,
        "num_cols": num_cols,
        'cols_per_multiplier': num_rows // cols_per_row
    }
    cfg_seq = [cfg]
    cfg_drv = drv(t=TCfg, seq=cfg_seq)

    # Add one more dimenstion to the matrix to support input type for design
    mat1 = mat1.reshape(1, mat1.shape[0], mat1.shape[1])
    mat2 = mat2.reshape(mat2.shape[0], 1, mat2.shape[1])
    mat1_seq = [mat1]
    mat2_seq = [mat2]

    row_t = Queue[Array[Int[16], cfg['num_cols']]]
    mat1_drv = drv(t=Queue[row_t], seq=mat1_seq)
    mat2_drv = drv(t=Queue[row_t], seq=mat2_seq)
    res = matrix_multiplication(cfg_drv,
                                mat1_drv,
                                mat2_drv,
                                cols_per_row=cols_per_row)
    collect(res, result=res_list)

    if sv_gen:
        cosim('/matrix_multiplication',
              'verilator',
              outdir='build/matrix_multiplication/rtl',
              rebuild=True,
              timeout=100)
    sim('build/matrix_multiplication')

    ## Print raw results results
    log.info(f'len_res_list: \n{len(res_list)}')
    try:
        pg_res = [int(el) for row_chunk in res_list for el in row_chunk]
        # calc refference data - matrix2 needs to be transposed before doing multiplocation
        np_res = np.dot(np.squeeze(mat1), np.transpose(mat2.squeeze()))
        pg_res = np.array(pg_res).reshape(np_res.shape)

        log.info(f'result: \n{res}')
        log.info(f'pg_res: \n{pg_res}, shape: {pg_res.shape}')
        log.info(f'np_res: \n{np_res}, shape: {np_res.shape}')
        sim_assert(
            np.equal(pg_res, np_res).all(), "Error in compatring results")
        log.info("\033[92m //==== PASS ====// \033[90m")
    except:
        # printing stack trace
        traceback.print_exc()
        log.info("\033[91m //==== FAILED ====// \033[90m")
示例#12
0
def test_full_flat_cosim(cosim_cls):
    verif(drv(t=Queue[Uint[4], 3], seq=[[[list(range(4))]]]),
          f=flatten(lvl=3, sim_cls=cosim_cls),
          ref=flatten(lvl=3, name='ref_model'))

    sim()