def test_append_transformation(self): t = SubstitutionTransformation({"Fe": "Mn"}) self.trans.append_transformation(t) self.assertEqual( "NaMnPO4", self.trans.final_structure.composition.reduced_formula) self.assertEqual(len(self.trans.structures), 3) coords = list() coords.append([0, 0, 0]) coords.append([0.75, 0.5, 0.75]) lattice = [ [3.8401979337, 0.00, 0.00], [1.9200989668, 3.3257101909, 0.00], [0.00, -2.2171384943, 3.1355090603], ] struct = Structure(lattice, ["Si4+", "Si4+"], coords) ts = TransformedStructure(struct, []) ts.append_transformation( SupercellTransformation.from_scaling_factors(2, 1, 1)) alt = ts.append_transformation( PartialRemoveSpecieTransformation( "Si4+", 0.5, algo=PartialRemoveSpecieTransformation.ALGO_COMPLETE), 5, ) self.assertEqual(len(alt), 2)
def solid_solution_sqs(structure, elem_frac_site, elem_frac_comp, sqs_scaling): ''' Use pymatgen SQSTransformation (which call ATAT mcsqs program) to generate disordered structure. Args: structure: pymatgen structure elem_frac_site: the factional occupy site in the original structure, e.g. 'Ti' elem_frac_comp: solid solution composition, e.g. 'Ti0.25Zr0.25Hf0.25Nb0.25' sqs_scaling (int or list): (same as pymatgen scaling in SQSTransformation) Scaling factor to determine supercell. Two options are possible: a. (preferred) Scales number of atoms, e.g., for a structure with 8 atoms, scaling=4 would lead to a 32 atom supercell b. A sequence of three scaling factors, e.g., [2, 1, 1], which specifies that the supercell should have dimensions 2a x b x c Return: pymatgen structure, SQS ''' # build another pymatgen structure structure[elem_frac_site] = elem_frac_comp ts = TransformedStructure(structure, []) # the directory must be set in SQSTransformation, otherwise the work dir # will be changed by this function workdir = os.getcwd() ts.append_transformation( SQSTransformation(scaling=sqs_scaling, search_time=1, directory=workdir, reduction_algo=False)) return ts.structures[-1]
def setUp(self): structure_dict = { "lattice": {"a": 4.754150115, "volume": 302.935463898643, "c": 10.462573348, "b": 6.090300362, "matrix": [[4.754150115, 0.0, 0.0], [0.0, 6.090300362, 0.0], [0.0, 0.0, 10.462573348]], "alpha": 90.0, "beta": 90.0, "gamma": 90.0}, "sites": [{"occu": 1, "abc": [0.0, 0.0, 0.0], "xyz": [0.0, 0.0, 0.0], "species": [{"occu": 1, "element": "Li"}], "label": "Li"}, {"occu": 1, "abc": [0.5000010396179928, 0.0, 0.5000003178950235], "xyz": [2.37708, 0.0, 5.23129], "species": [{"occu": 1, "element": "Li"}], "label": "Li"}, {"occu": 1, "abc": [0.0, 0.49999997028061194, 0.0], "xyz": [0.0, 3.04515, 0.0], "species": [{"occu": 1, "element": "Li"}], "label": "Li"}, {"occu": 1, "abc": [0.5000010396179928, 0.49999997028061194, 0.5000003178950235], "xyz": [2.37708, 3.04515, 5.23129], "species": [{"occu": 1, "element": "Li"}], "label": "Li"}, {"occu": 1, "abc": [0.7885825876997996, 0.5473161916279229, 0.3339168944194627], "xyz": [3.74904, 3.33332, 3.4936300000000005], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.2114173881108085, 0.452683748933301, 0.6660827855827808], "xyz": [1.00511, 2.75698, 6.968940000000001], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.7114184277288014, 0.5473161916279229, 0.8339172123144861], "xyz": [3.38219, 3.33332, 8.72492], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.7885825876997996, 0.9526820772587701, 0.3339168944194627], "xyz": [3.74904, 5.8021199999999995, 3.4936300000000005], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.28858365150718424, 0.047317863302453654, 0.16608342347556082], "xyz": [1.37197, 0.28818, 1.73766], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.7440972443925447, 0.25000080611787734, 0.09613791622232937], "xyz": [3.537549999999999, 1.52258, 1.00585], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.28858365150718424, 0.452683748933301, 0.16608342347556082], "xyz": [1.37197, 2.75698, 1.73766], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.2114173881108085, 0.047317863302453654, 0.6660827855827808], "xyz": [1.00511, 0.28818, 6.968940000000001], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.2559006279926859, 0.7499991344433464, 0.9038627195677177], "xyz": [1.21659, 4.56772, 9.45673], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.7559016676106785, 0.25000080611787734, 0.5961372783295493], "xyz": [3.5936699999999986, 1.52258, 6.2371300000000005], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.7939989080466804, 0.7499991344433464, 0.5421304884886912], "xyz": [3.77479, 4.56772, 5.67208], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.24409830819992942, 0.7499991344433464, 0.40386240167269416], "xyz": [1.16048, 4.56772, 4.22544], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.7060021073819206, 0.7499991344433464, 0.04213017059366761], "xyz": [3.35644, 4.56772, 0.44079000000000007], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.2939978684286875, 0.25000080611787734, 0.9578695094085758], "xyz": [1.3977099999999996, 1.52258, 10.02178], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.20600106776392774, 0.25000080611787734, 0.4578701473013559], "xyz": [0.9793599999999998, 1.52258, 4.7905], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.7114184277288014, 0.9526820772587701, 0.8339172123144861], "xyz": [3.38219, 5.8021199999999995, 8.72492], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.5793611756830275, 0.7499991344433464, 0.9051119342269868], "xyz": [2.75437, 4.56772, 9.4698], "species": [{"occu": 1, "element": "P"}], "label": "P"}, {"occu": 1, "abc": [0.9206377363201961, 0.7499991344433464, 0.40511161633196324], "xyz": [4.37685, 4.56772, 4.23851], "species": [{"occu": 1, "element": "P"}], "label": "P"}, {"occu": 1, "abc": [0.42063880012758065, 0.25000080611787734, 0.09488774577525667], "xyz": [1.9997799999999994, 1.52258, 0.99277], "species": [{"occu": 1, "element": "P"}], "label": "P"}, {"occu": 1, "abc": [0.07936223949041206, 0.25000080611787734, 0.5948880636702801], "xyz": [0.3773, 1.52258, 6.22406], "species": [{"occu": 1, "element": "P"}], "label": "P"}, {"occu": 1, "abc": [0.021860899947623972, 0.7499991344433464, 0.7185507570598875], "xyz": [0.10393, 4.56772, 7.517890000000001], "species": [{"occu": 1, "element": "Fe"}], "label": "Fe"}, {"occu": 1, "abc": [0.478135932819614, 0.7499991344433464, 0.21855043916486389], "xyz": [2.27313, 4.56772, 2.2866], "species": [{"occu": 1, "element": "Fe"}], "label": "Fe"}, {"occu": 1, "abc": [0.9781369724376069, 0.25000080611787734, 0.2814489229423561], "xyz": [4.65021, 1.52258, 2.9446800000000004], "species": [{"occu": 1, "element": "Fe"}], "label": "Fe"}, {"occu": 1, "abc": [0.5218619395656168, 0.25000080611787734, 0.7814492408373795], "xyz": [2.48101, 1.52258, 8.17597], "species": [{"occu": 1, "element": "Fe"}], "label": "Fe"}]} structure = Structure.from_dict(structure_dict) self.structure = structure trans = [SubstitutionTransformation({"Li": "Na"})] self.trans = TransformedStructure(structure, trans)
def test_append_transformation(self): t = SubstitutionTransformation({"Fe":"Mn"}) self.trans.append_transformation(t) self.assertEqual("NaMnPO4", self.trans.final_structure.composition.reduced_formula) self.assertEqual(len(self.trans.structures), 3) coords = list() coords.append([0, 0, 0]) coords.append([0.75, 0.5, 0.75]) lattice = [[ 3.8401979337, 0.00, 0.00], [1.9200989668, 3.3257101909, 0.00], [0.00, -2.2171384943, 3.1355090603]] struct = Structure(lattice, ["Si4+", "Si4+"], coords) ts = TransformedStructure(struct, []) ts.append_transformation(SupercellTransformation.from_scaling_factors(2, 1, 1)) alt = ts.append_transformation(PartialRemoveSpecieTransformation('Si4+', 0.5, algo=PartialRemoveSpecieTransformation.ALGO_COMPLETE), 5) self.assertEqual(len(alt), 2)
def test_snl(self): self.trans.set_parameter("author", "will") with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") snl = self.trans.to_snl([("will", "*****@*****.**")]) self.assertEqual(len(w), 1, "Warning not raised on type conversion " "with other_parameters") ts = TransformedStructure.from_snl(snl) self.assertEqual(ts.history[-1]["@class"], "SubstitutionTransformation") h = ("testname", "testURL", {"test": "testing"}) snl = StructureNL(ts.final_structure, [("will", "*****@*****.**")], history=[h]) snl = TransformedStructure.from_snl(snl).to_snl([("notwill", "*****@*****.**")]) self.assertEqual(snl.history, [h]) self.assertEqual(snl.authors, [("notwill", "*****@*****.**")])
def run_task(self, fw_spec): transformations = [] transformation_params = self.get( "transformation_params", [{} for i in range(len(self["transformations"]))]) for t in self["transformations"]: for m in [ "advanced_transformations", "defect_transformations", "site_transformations", "standard_transformations" ]: mod = __import__("pymatgen.transformations." + m, globals(), locals(), [t], -1) try: t_cls = getattr(mod, t) except AttributeError: continue t_obj = t_cls(**transformation_params.pop(0)) transformations.append(t_obj) structure = self['structure'] if 'prev_calc_dir' not in self else \ Poscar.from_file(os.path.join(self['prev_calc_dir'], 'POSCAR')).structure ts = TransformedStructure(structure) transmuter = StandardTransmuter([ts], transformations) final_structure = transmuter.transformed_structures[ -1].final_structure.copy() vis_orig = self["vasp_input_set"] vis_dict = vis_orig.as_dict() vis_dict["structure"] = final_structure.as_dict() vis_dict.update(self.get("override_default_vasp_params", {}) or {}) vis = vis_orig.__class__.from_dict(vis_dict) vis.write_input(".")
def __init__(self, cif_string, transformations=None, primitive=True, extend_collection=False): """ Generates a Transmuter from a cif string, possibly containing multiple structures. Args: cif_string: A string containing a cif or a series of cifs transformations: New transformations to be applied to all structures primitive: Whether to generate the primitive cell from the cif. extend_collection: Whether to use more than one output structure from one-to-many transformations. extend_collection can be a number, which determines the maximum branching for each transformation. """ transformed_structures = [] lines = cif_string.split("\n") structure_data = [] read_data = False for line in lines: if re.match("^\s*data", line): structure_data.append([]) read_data = True if read_data: structure_data[-1].append(line) for data in structure_data: tstruct = TransformedStructure.from_cif_string( "\n".join(data), [], primitive) transformed_structures.append(tstruct) super(CifTransmuter, self).__init__(transformed_structures, transformations, extend_collection)
def __init__(self, cif_string, transformations=None, primitive=True, extend_collection=False): """ Generates a Transmuter from a cif string, possibly containing multiple structures. Args: cif_string: A string containing a cif or a series of cifs transformations: New transformations to be applied to all structures primitive: Whether to generate the primitive cell from the cif. extend_collection: Whether to use more than one output structure from one-to-many transformations. """ transformed_structures = [] lines = cif_string.split("\n") structure_data = [] read_data = False for line in lines: if re.match("^\s*data", line): structure_data.append([]) read_data = True if read_data: structure_data[-1].append(line) for data in structure_data: tstruct = TransformedStructure.from_cif_string("\n".join(data), [], primitive) transformed_structures.append(tstruct) StandardTransmuter.__init__(self, transformed_structures, transformations, extend_collection)
def run_task(self, fw_spec): transformations = [] transformation_params = self.get("transformation_params", [{} for i in range(len(self["transformations"]))]) for t in self["transformations"]: found = False for m in ["advanced_transformations", "defect_transformations", "site_transformations", "standard_transformations"]: mod = import_module("pymatgen.transformations.{}".format(m)) try: t_cls = getattr(mod, t) except AttributeError: continue t_obj = t_cls(**transformation_params.pop(0)) transformations.append(t_obj) found = True if not found: raise ValueError("Could not find transformation: {}".format(t)) # TODO: @matk86 - should prev_calc_dir use CONTCAR instead of POSCAR? Note that if # current dir, maybe it is POSCAR indeed best ... -computron structure = self['structure'] if not self.get('prev_calc_dir', None) else \ Poscar.from_file(os.path.join(self['prev_calc_dir'], 'POSCAR')).structure ts = TransformedStructure(structure) transmuter = StandardTransmuter([ts], transformations) final_structure = transmuter.transformed_structures[-1].final_structure.copy() vis_orig = self["vasp_input_set"] vis_dict = vis_orig.as_dict() vis_dict["structure"] = final_structure.as_dict() vis_dict.update(self.get("override_default_vasp_params", {}) or {}) vis = vis_orig.__class__.from_dict(vis_dict) vis.write_input(".")
def run_task(self, fw_spec): db = SPStructuresMongoAdapter.auto_load() tstructs = [] species = fw_spec['species'] t = fw_spec['threshold'] for p in SubstitutionPredictor(threshold=t).list_prediction(species): subs = p['substitutions'] if len(set(subs.values())) < len(species): continue st = SubstitutionTransformation(subs) target = map(str, subs.keys()) for snl in db.get_snls(target): ts = TransformedStructure.from_snl(snl) ts.append_transformation(st) if ts.final_structure.charge == 0: tstructs.append(ts) transmuter = StandardTransmuter(tstructs) f = RemoveDuplicatesFilter(structure_matcher=StructureMatcher( comparator=ElementComparator(), primitive_cell=False)) transmuter.apply_filter(f) results = [] for ts in transmuter.transformed_structures: results.append(ts.to_snl([]).to_dict) submissions = SPSubmissionsMongoAdapter.auto_load() submissions.insert_results(fw_spec['submission_id'], results)
def convert_fmt(args): iformat = args.input_format[0] oformat = args.output_format[0] filename = args.input_filename[0] out_filename = args.output_filename[0] try: if iformat == "smart": structure = read_structure(filename) if iformat == "POSCAR": p = Poscar.from_file(filename) structure = p.structure elif iformat == "CIF": r = CifParser(filename) structure = r.get_structures()[0] elif iformat == "CSSR": structure = Cssr.from_file(filename).structure if oformat == "smart": write_structure(structure, out_filename) elif oformat == "POSCAR": p = Poscar(structure) p.write_file(out_filename) elif oformat == "CIF": w = CifWriter(structure) w.write_file(out_filename) elif oformat == "CSSR": c = Cssr(structure) c.write_file(out_filename) elif oformat == "VASP": input_set = MPVaspInputSet() ts = TransformedStructure(structure, [], history=[{ "source": "file", "datetime": str(datetime.datetime.now()), "original_file": open(filename).read() }]) ts.write_vasp_input(input_set, output_dir=out_filename) elif oformat == "MITVASP": input_set = MITVaspInputSet() ts = TransformedStructure(structure, [], history=[{ "source": "file", "datetime": str(datetime.datetime.now()), "original_file": open(filename).read() }]) ts.write_vasp_input(input_set, output_dir=out_filename) except Exception as ex: print "Error converting file. Are they in the right format?" print str(ex)
def __init__(self, poscar_string, transformations=None, extend_collection=False): tstruct = TransformedStructure.from_poscar_string(poscar_string, []) StandardTransmuter.__init__(self, [tstruct], transformations, extend_collection=extend_collection)
def test_snl(self): self.trans.set_parameter('author', 'will') with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") snl = self.trans.to_snl([('will', '*****@*****.**')]) self.assertEqual(len(w), 1, 'Warning not raised on type conversion ' 'with other_parameters') ts = TransformedStructure.from_snl(snl) self.assertEqual(ts.history[-1]['@class'], 'SubstitutionTransformation') h = ('testname', 'testURL', {'test' : 'testing'}) snl = StructureNL(ts.final_structure,[('will', '*****@*****.**')], history = [h]) snl = TransformedStructure.from_snl(snl).to_snl([('notwill', '*****@*****.**')]) self.assertEqual(snl.history, [h]) self.assertEqual(snl.authors, [('notwill', '*****@*****.**')])
def test_from_dict(self): d = json.load(open(os.path.join(test_dir, 'transformations.json'), 'r')) d['other_parameters'] = {'tags': ['test']} ts = TransformedStructure.from_dict(d) ts.set_parameter('author', 'Will') ts.append_transformation(SubstitutionTransformation({"Fe":"Mn"})) self.assertEqual("MnPO4", ts.final_structure.composition.reduced_formula) self.assertEqual(ts.other_parameters, {'author': 'Will', 'tags': ['test']})
def __init__(self, poscar_string, transformations=None, extend_collection=False): tstruct = TransformedStructure.from_poscar_string(poscar_string, []) super().__init__([tstruct], transformations, extend_collection=extend_collection)
def test_from_dict(self): d = json.load(open(os.path.join(test_dir, "transformations.json"), "r")) d["other_parameters"] = {"tags": ["test"]} ts = TransformedStructure.from_dict(d) ts.other_parameters["author"] = "Will" ts.append_transformation(SubstitutionTransformation({"Fe": "Mn"})) self.assertEqual("MnPO4", ts.final_structure.composition.reduced_formula) self.assertEqual(ts.other_parameters, {"author": "Will", "tags": ["test"]})
def test_from_dict(self): d = json.load(open(os.path.join(PymatgenTest.TEST_FILES_DIR, "transformations.json"), "r")) d["other_parameters"] = {"tags": ["test"]} ts = TransformedStructure.from_dict(d) ts.other_parameters["author"] = "Will" ts.append_transformation(SubstitutionTransformation({"Fe": "Mn"})) self.assertEqual("MnPO4", ts.final_structure.composition.reduced_formula) self.assertEqual(ts.other_parameters, {"author": "Will", "tags": ["test"]})
def test_snl(self): self.trans.set_parameter("author", "will") with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") snl = self.trans.to_snl([("will", "*****@*****.**")]) self.assertEqual( len(w), 1, "Warning not raised on type conversion " "with other_parameters", ) ts = TransformedStructure.from_snl(snl) self.assertEqual(ts.history[-1]["@class"], "SubstitutionTransformation") h = ("testname", "testURL", {"test": "testing"}) snl = StructureNL(ts.final_structure, [("will", "*****@*****.**")], history=[h]) snl = TransformedStructure.from_snl(snl).to_snl([("notwill", "*****@*****.**")]) self.assertEqual(snl.history, [h]) self.assertEqual(snl.authors, [("notwill", "*****@*****.**")])
def test_undo_last_transformation_and_redo(self): trans = [] trans.append(SubstitutionTransformation({"Li":"Na"})) trans.append(SubstitutionTransformation({"Fe":"Mn"})) ts = TransformedStructure(self.structure, trans) self.assertEqual("NaMnPO4", ts.final_structure.composition.reduced_formula) ts.undo_last_transformation() self.assertEqual("NaFePO4", ts.final_structure.composition.reduced_formula) ts.undo_last_transformation() self.assertEqual("LiFePO4", ts.final_structure.composition.reduced_formula) self.assertRaises(IndexError, ts.undo_last_transformation) ts.redo_next_transformation() self.assertEqual("NaFePO4", ts.final_structure.composition.reduced_formula) ts.redo_next_transformation() self.assertEqual("NaMnPO4", ts.final_structure.composition.reduced_formula) self.assertRaises(IndexError, ts.redo_next_transformation)
def test_from_dict(self): d = json.load(open(os.path.join(test_dir, 'transformations.json'), 'r')) d['other_parameters'] = {'tags': ['test']} ts = TransformedStructure.from_dict(d) ts.other_parameters['author'] = 'Will' ts.append_transformation(SubstitutionTransformation({"Fe": "Mn"})) self.assertEqual("MnPO4", ts.final_structure.composition.reduced_formula) self.assertEqual(ts.other_parameters, {'author': 'Will', 'tags': ['test']})
def convert_fmt(args): iformat = args.input_format[0] oformat = args.output_format[0] filename = args.input_filename[0] out_filename = args.output_filename[0] try: if iformat == "POSCAR": p = Poscar.from_file(filename) structure = p.structure elif iformat == "CIF": r = CifParser(filename) structure = r.get_structures()[0] elif iformat == "CONVENTIONAL_CIF": r = CifParser(filename) structure = r.get_structures(primitive=False)[0] elif iformat == "CSSR": structure = Cssr.from_file(filename).structure else: structure = Structure.from_file(filename) if oformat == "smart": structure.to(filename=out_filename) elif oformat == "POSCAR": p = Poscar(structure) p.write_file(out_filename) elif oformat == "CIF": w = CifWriter(structure) w.write_file(out_filename) elif oformat == "CSSR": c = Cssr(structure) c.write_file(out_filename) elif oformat == "VASP": ts = TransformedStructure( structure, [], history=[{"source": "file", "datetime": str(datetime.datetime.now()), "original_file": open(filename).read()}]) ts.write_vasp_input(MPRelaxSet, output_dir=out_filename) elif oformat == "MITVASP": ts = TransformedStructure( structure, [], history=[{"source": "file", "datetime": str(datetime.datetime.now()), "original_file": open(filename).read()}]) ts.write_vasp_input(MITRelaxSet, output_dir=out_filename) except Exception as ex: print("Error converting file. Are they in the right format?") print(str(ex))
def __init__(self, poscar_string, transformations=None, extend_collection=False): """ Args: poscar_string: List of POSCAR strings transformations: New transformations to be applied to all structures. extend_collection: Whether to use more than one output structure from one-to-many transformations. """ tstruct = TransformedStructure.from_poscar_string(poscar_string, []) super().__init__( [tstruct], transformations, extend_collection=extend_collection )
def run_task(self, fw_spec): transformations = [] transformation_params = self.get( "transformation_params", [{} for _ in range(len(self["transformations"]))], ) for t in self["transformations"]: found = False t_cls = None for m in [ "advanced_transformations", "defect_transformations", "site_transformations", "standard_transformations", ]: mod = import_module(f"pymatgen.transformations.{m}") try: t_cls = getattr(mod, t) found = True continue except AttributeError: pass if not found: raise ValueError(f"Could not find transformation: {t}") t_obj = t_cls(**transformation_params.pop(0)) transformations.append(t_obj) # TODO: @matk86 - should prev_calc_dir use CONTCAR instead of POSCAR? # Note that if current dir, maybe POSCAR is indeed best ... -computron structure = (self["structure"] if not self.get("prev_calc_dir", None) else Poscar.from_file( os.path.join(self["prev_calc_dir"], "POSCAR")).structure) ts = TransformedStructure(structure) transmuter = StandardTransmuter([ts], transformations) final_structure = transmuter.transformed_structures[ -1].final_structure.copy() vis_orig = self["vasp_input_set"] vis_dict = vis_orig.as_dict() vis_dict["structure"] = final_structure.as_dict() vis_dict.update(self.get("override_default_vasp_params", {}) or {}) vis = vis_orig.__class__.from_dict(vis_dict) potcar_spec = self.get("potcar_spec", False) vis.write_input(".", potcar_spec=potcar_spec) dumpfn(transmuter.transformed_structures[-1], "transformations.json")
def __init__(self, poscar_string, transformations=None, extend_collection=False): """ Args: poscar_string: List of POSCAR strings transformations: New transformations to be applied to all structures. extend_collection: Whether to use more than one output structure from one-to-many transformations. """ tstruct = TransformedStructure.from_poscar_string(poscar_string, []) StandardTransmuter.__init__(self, [tstruct], transformations, extend_collection=extend_collection)
def __init__(self, queryengine, criteria, transformations, extend_collection=0, ncores=None): """Constructor. Args: queryengine: QueryEngine object for database access criteria: A criteria to search on, which is passed to queryengine's get_entries method. transformations: New transformations to be applied to all structures extend_collection: Whether to use more than one output structure from one-to-many transformations. extend_collection can be a number, which determines the maximum branching for each transformation. ncores: Number of cores to use for applying transformations. Uses multiprocessing.Pool """ entries = queryengine.get_entries(criteria, inc_structure=True) source = "{}:{}/{}/{}".format(queryengine.host, queryengine.port, queryengine.database_name, queryengine.collection_name) def get_history(entry): return [{ "source": source, "criteria": criteria, "entry": entry.as_dict(), "datetime": datetime.datetime.utcnow() }] transformed_structures = [ TransformedStructure(entry.structure, [], history=get_history(entry)) for entry in entries ] StandardTransmuter.__init__(self, transformed_structures, transformations=transformations, extend_collection=extend_collection, ncores=ncores)
def _add_metadata(structure): """ For book-keeping, store useful metadata with the Structure object for later database ingestion including workflow version and a UUID for easier querying of all tasks generated from the workflow. Args: structure: Structure Returns: TransformedStructure """ # this could be further improved by storing full transformation # history, but would require an improved transformation pipeline return TransformedStructure( structure, other_parameters={"wf_meta": self.wf_meta})
def convert_fmt(args): iformat = args.input_format[0] oformat = args.output_format[0] filename = args.input_filename[0] out_filename = args.output_filename[0] try: if iformat == "smart": structure = read_structure(filename) if iformat == "POSCAR": p = Poscar.from_file(filename) structure = p.structure elif iformat == "CIF": r = CifParser(filename) structure = r.get_structures()[0] elif iformat == "CSSR": structure = Cssr.from_file(filename).structure if oformat == "smart": write_structure(structure, out_filename) elif oformat == "POSCAR": p = Poscar(structure) p.write_file(out_filename) elif oformat == "CIF": w = CifWriter(structure) w.write_file(out_filename) elif oformat == "CSSR": c = Cssr(structure) c.write_file(out_filename) elif oformat == "VASP": input_set = MPVaspInputSet() ts = TransformedStructure( structure, [], history=[ {"source": "file", "datetime": str(datetime.datetime.now()), "original_file": open(filename).read()} ], ) ts.write_vasp_input(input_set, output_dir=out_filename) elif oformat == "MITVASP": input_set = MITVaspInputSet() ts = TransformedStructure( structure, [], history=[ {"source": "file", "datetime": str(datetime.datetime.now()), "original_file": open(filename).read()} ], ) ts.write_vasp_input(input_set, output_dir=out_filename) except Exception as ex: print "Error converting file. Are they in the right format?" print str(ex)
def __init__(self, poscar_string, transformations=[], extend_collection=False): """ Generates a transmuter from a sequence of POSCARs. Args: poscar_string: List of POSCAR strings transformations: New transformations to be applied to all structures. primitive: Whether to generate the primitive cell from the cif. extend_collection: Whether to use more than one output structure from one-to-many transformations. """ transformed_structures = [] transformed_structures.append(TransformedStructure.from_poscar_string(poscar_string, [])) StandardTransmuter.__init__(self, transformed_structures, transformations, extend_collection=extend_collection)
def from_filenames(poscar_filenames, transformations=None, extend_collection=False): """ Convenient constructor to generates a POSCAR transmuter from a list of POSCAR filenames. Args: poscar_filenames: List of POSCAR filenames transformations: New transformations to be applied to all structures. extend_collection: Same meaning as in __init__. """ tstructs = [] for filename in poscar_filenames: with open(filename, "r") as f: tstructs.append(TransformedStructure.from_poscar_string(f.read(), [])) return StandardTransmuter( tstructs, transformations, extend_collection=extend_collection )
def from_structures(structures, transformations=None, extend_collection=0): """ Alternative constructor from structures rather than TransformedStructures. Args: structures: Sequence of structures transformations: New transformations to be applied to all structures extend_collection: Whether to use more than one output structure from one-to-many transformations. extend_collection can be a number, which determines the maximum branching for each transformation. Returns: StandardTransmuter """ tstruct = [TransformedStructure(s, []) for s in structures] return StandardTransmuter(tstruct, transformations, extend_collection)
def test_undo_and_redo_last_change(self): trans = [ SubstitutionTransformation({"Li": "Na"}), SubstitutionTransformation({"Fe": "Mn"}) ] ts = TransformedStructure(self.structure, trans) self.assertEqual("NaMnPO4", ts.final_structure.composition.reduced_formula) ts.undo_last_change() self.assertEqual("NaFePO4", ts.final_structure.composition.reduced_formula) ts.undo_last_change() self.assertEqual("LiFePO4", ts.final_structure.composition.reduced_formula) self.assertRaises(IndexError, ts.undo_last_change) ts.redo_next_change() self.assertEqual("NaFePO4", ts.final_structure.composition.reduced_formula) ts.redo_next_change() self.assertEqual("NaMnPO4", ts.final_structure.composition.reduced_formula) self.assertRaises(IndexError, ts.redo_next_change) #Make sure that this works with filters. f3 = ContainsSpecieFilter(['O2-'], strict_compare=True, AND=False) ts.append_filter(f3) ts.undo_last_change() ts.redo_next_change()
def setUp(self): structure = PymatgenTest.get_structure("LiFePO4") self.structure = structure trans = [SubstitutionTransformation({"Li": "Na"})] self.trans = TransformedStructure(structure, trans)
class TransformedStructureTest(PymatgenTest): def setUp(self): structure = PymatgenTest.get_structure("LiFePO4") self.structure = structure trans = [SubstitutionTransformation({"Li": "Na"})] self.trans = TransformedStructure(structure, trans) def test_append_transformation(self): t = SubstitutionTransformation({"Fe": "Mn"}) self.trans.append_transformation(t) self.assertEqual( "NaMnPO4", self.trans.final_structure.composition.reduced_formula) self.assertEqual(len(self.trans.structures), 3) coords = list() coords.append([0, 0, 0]) coords.append([0.75, 0.5, 0.75]) lattice = [[3.8401979337, 0.00, 0.00], [1.9200989668, 3.3257101909, 0.00], [0.00, -2.2171384943, 3.1355090603]] struct = Structure(lattice, ["Si4+", "Si4+"], coords) ts = TransformedStructure(struct, []) ts.append_transformation( SupercellTransformation.from_scaling_factors(2, 1, 1)) alt = ts.append_transformation( PartialRemoveSpecieTransformation( 'Si4+', 0.5, algo=PartialRemoveSpecieTransformation.ALGO_COMPLETE), 5) self.assertEqual(len(alt), 2) def test_append_filter(self): f3 = ContainsSpecieFilter(['O2-'], strict_compare=True, AND=False) self.trans.append_filter(f3) def test_get_vasp_input(self): SETTINGS["PMG_VASP_PSP_DIR"] = os.path.abspath( os.path.join(os.path.dirname(__file__), "..", "..", "..", "test_files")) potcar = self.trans.get_vasp_input(MPRelaxSet)['POTCAR'] self.assertEqual("Na_pv\nFe_pv\nP\nO", "\n".join([p.symbol for p in potcar])) self.assertEqual(len(self.trans.structures), 2) def test_final_structure(self): self.assertEqual( "NaFePO4", self.trans.final_structure.composition.reduced_formula) def test_from_dict(self): d = json.load(open(os.path.join(test_dir, 'transformations.json'), 'r')) d['other_parameters'] = {'tags': ['test']} ts = TransformedStructure.from_dict(d) ts.other_parameters['author'] = 'Will' ts.append_transformation(SubstitutionTransformation({"Fe": "Mn"})) self.assertEqual("MnPO4", ts.final_structure.composition.reduced_formula) self.assertEqual(ts.other_parameters, { 'author': 'Will', 'tags': ['test'] }) def test_undo_and_redo_last_change(self): trans = [ SubstitutionTransformation({"Li": "Na"}), SubstitutionTransformation({"Fe": "Mn"}) ] ts = TransformedStructure(self.structure, trans) self.assertEqual("NaMnPO4", ts.final_structure.composition.reduced_formula) ts.undo_last_change() self.assertEqual("NaFePO4", ts.final_structure.composition.reduced_formula) ts.undo_last_change() self.assertEqual("LiFePO4", ts.final_structure.composition.reduced_formula) self.assertRaises(IndexError, ts.undo_last_change) ts.redo_next_change() self.assertEqual("NaFePO4", ts.final_structure.composition.reduced_formula) ts.redo_next_change() self.assertEqual("NaMnPO4", ts.final_structure.composition.reduced_formula) self.assertRaises(IndexError, ts.redo_next_change) #Make sure that this works with filters. f3 = ContainsSpecieFilter(['O2-'], strict_compare=True, AND=False) ts.append_filter(f3) ts.undo_last_change() ts.redo_next_change() def test_as_dict(self): self.trans.set_parameter('author', 'will') d = self.trans.as_dict() self.assertIn('last_modified', d) self.assertIn('history', d) self.assertIn('version', d) self.assertIn('author', d['other_parameters']) self.assertEqual(Structure.from_dict(d).formula, 'Na4 Fe4 P4 O16') def test_snl(self): self.trans.set_parameter('author', 'will') with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") snl = self.trans.to_snl([('will', '*****@*****.**')]) self.assertEqual( len(w), 1, 'Warning not raised on type conversion ' 'with other_parameters') ts = TransformedStructure.from_snl(snl) self.assertEqual(ts.history[-1]['@class'], 'SubstitutionTransformation') h = ('testname', 'testURL', {'test': 'testing'}) snl = StructureNL(ts.final_structure, [('will', '*****@*****.**')], history=[h]) snl = TransformedStructure.from_snl(snl).to_snl([('notwill', '*****@*****.**')]) self.assertEqual(snl.history, [h]) self.assertEqual(snl.authors, [('notwill', '*****@*****.**')])
def prep(ctx, archive, authors): """prep structures from an archive for submission""" run = ctx.obj["RUN"] collections = ctx.obj["COLLECTIONS"] snl_collection = ctx.obj["CLIENT"].db.snls handler = ctx.obj["MONGO_HANDLER"] nmax = ctx.obj["NMAX"] skip = ctx.obj["SKIP"] # TODO no_dupe_check flag fname, ext = os.path.splitext(os.path.basename(archive)) tag, sec_ext = fname.rsplit(".", 1) if "." in fname else [fname, ""] logger.info(click.style(f"tag: {tag}", fg="cyan")) if sec_ext: ext = "".join([sec_ext, ext]) exts = ["tar.gz", ".tgz", "bson.gz", ".zip"] if ext not in exts: raise EmmetCliError( f"{ext} not supported (yet)! Please use one of {exts}.") meta = {"authors": [Author.parse_author(a) for a in authors]} references = meta.get("references", "").strip() source_ids_scanned = handler.collection.distinct("source_id", {"tags": tag}) # TODO add archive of StructureNL files input_structures, source_total = [], None if ext == "bson.gz": input_bson = gzip.open(archive) source_total = count_file_documents(input_bson) for doc in bson.decode_file_iter(input_bson): if len(input_structures) >= nmax: break if skip and doc["db_id"] in source_ids_scanned: continue elements = set([ specie["element"] for site in doc["structure"]["sites"] for specie in site["species"] ]) for l in SETTINGS.skip_labels: if l in elements: logger.log( logging.ERROR if run else logging.INFO, f'Skip structure {doc["db_id"]}: unsupported element {l}!', extra={ "tags": [tag], "source_id": doc["db_id"] }, ) break else: s = TransformedStructure.from_dict(doc["structure"]) s.source_id = doc["db_id"] input_structures.append(s) elif ext == ".zip": input_zip = ZipFile(archive) namelist = input_zip.namelist() source_total = len(namelist) for fname in namelist: if len(input_structures) >= nmax: break if skip and fname in source_ids_scanned: continue contents = input_zip.read(fname) fmt = get_format(fname) s = Structure.from_str(contents, fmt=fmt) s.source_id = fname input_structures.append(s) else: tar = tarfile.open(archive, "r:gz") members = tar.getmembers() source_total = len(members) for member in members: if os.path.basename(member.name).startswith("."): continue if len(input_structures) >= nmax: break fname = member.name.lower() if skip and fname in source_ids_scanned: continue f = tar.extractfile(member) if f: contents = f.read().decode("utf-8") fmt = get_format(fname) s = Structure.from_str(contents, fmt=fmt) s.source_id = fname input_structures.append(s) total = len(input_structures) logger.info( f"{total} of {source_total} structure(s) loaded " f"({len(source_ids_scanned)} unique structures already scanned).") save_logs(ctx) snls, index = [], None for istruct in input_structures: # number of log messages equals number of structures processed if --run # only logger.warning goes to DB if --run if run and len(handler.buffer) >= handler.buffer_size: insert_snls(ctx, snls) struct = (istruct.final_structure if isinstance( istruct, TransformedStructure) else istruct) struct.remove_oxidation_states() struct = struct.get_primitive_structure() formula = struct.composition.reduced_formula sg = get_sg(struct) if not (struct.is_ordered and struct.is_valid()): logger.log( logging.WARNING if run else logging.INFO, f"Skip structure {istruct.source_id}: disordered or invalid!", extra={ "formula": formula, "spacegroup": sg, "tags": [tag], "source_id": istruct.source_id, }, ) continue for full_name, coll in collections.items(): # load canonical structures in collection for current formula and # duplicate-check them against current structure load_canonical_structures(ctx, full_name, formula) for canonical_structure in canonical_structures[full_name][ formula].get(sg, []): if structures_match(struct, canonical_structure): logger.log( logging.WARNING if run else logging.INFO, f"Duplicate for {istruct.source_id} ({formula}/{sg}): {canonical_structure.id}", extra={ "formula": formula, "spacegroup": sg, "tags": [tag], "source_id": istruct.source_id, "duplicate_dbname": full_name, "duplicate_id": canonical_structure.id, }, ) break else: continue # no duplicate found -> continue to next collection break # duplicate found else: # no duplicates in any collection prefix = snl_collection.database.name if index is None: # get start index for SNL id snl_ids = snl_collection.distinct("snl_id") index = max( [int(snl_id[len(prefix) + 1:]) for snl_id in snl_ids]) index += 1 snl_id = "{}-{}".format(prefix, index) kwargs = {"references": references, "projects": [tag]} if isinstance(istruct, TransformedStructure): snl = istruct.to_snl(meta["authors"], **kwargs) else: snl = StructureNL(istruct, meta["authors"], **kwargs) snl_dct = snl.as_dict() snl_dct.update(get_meta_from_structure(struct)) snl_dct["snl_id"] = snl_id snls.append(snl_dct) logger.log( logging.WARNING if run else logging.INFO, f"SNL {snl_id} created for {istruct.source_id} ({formula}/{sg})", extra={ "formula": formula, "spacegroup": sg, "tags": [tag], "source_id": istruct.source_id, }, ) # final save if run: insert_snls(ctx, snls)
excluded_bonding_elements = args.exclude_bonding[0].split(',') if args.exclude_bonding else [] file_format = args.format filename = args.input_file[0] s = None if filename.endswith(".cif"): file_format = "cif" elif filename.startswith("POSCAR"): file_format = "poscar" elif re.search('\.json', filename): file_format = 'mpjson' if file_format == 'poscar': p = Poscar.from_file(filename) s = p.struct elif file_format == 'cif': r = CifParser(filename) s = r.get_structures(False)[0] else: d = json.load(file_open_zip_aware(filename)) ts = TransformedStructure.from_dict(d) s = ts.final_structure if s: vis = StructureVis(excluded_bonding_elements=excluded_bonding_elements) vis.set_structure(s) vis.show()
def from_filenames(poscar_filenames, transformations=[], extend_collection=False): transformed_structures = [] for filename in poscar_filenames: with open(filename, "r") as f: transformed_structures.append(TransformedStructure.from_poscar_string(f.read(), [])) return StandardTransmuter(transformed_structures, transformations, extend_collection=extend_collection)
def list_TransformedStructure(list_struc): return [TransformedStructure(structure) for structure in list_struc]
class TransformedStructureTest(unittest.TestCase): def setUp(self): structure_dict = { "lattice": { "a": 4.754150115, "volume": 302.935463898643, "c": 10.462573348, "b": 6.090300362, "matrix": [[4.754150115, 0.0, 0.0], [0.0, 6.090300362, 0.0], [0.0, 0.0, 10.462573348]], "alpha": 90.0, "beta": 90.0, "gamma": 90.0 }, "sites": [{ "occu": 1, "abc": [0.0, 0.0, 0.0], "xyz": [0.0, 0.0, 0.0], "species": [{ "occu": 1, "element": "Li" }], "label": "Li" }, { "occu": 1, "abc": [0.5000010396179928, 0.0, 0.5000003178950235], "xyz": [2.37708, 0.0, 5.23129], "species": [{ "occu": 1, "element": "Li" }], "label": "Li" }, { "occu": 1, "abc": [0.0, 0.49999997028061194, 0.0], "xyz": [0.0, 3.04515, 0.0], "species": [{ "occu": 1, "element": "Li" }], "label": "Li" }, { "occu": 1, "abc": [0.5000010396179928, 0.49999997028061194, 0.5000003178950235], "xyz": [2.37708, 3.04515, 5.23129], "species": [{ "occu": 1, "element": "Li" }], "label": "Li" }, { "occu": 1, "abc": [0.7885825876997996, 0.5473161916279229, 0.3339168944194627], "xyz": [3.74904, 3.33332, 3.4936300000000005], "species": [{ "occu": 1, "element": "O" }], "label": "O" }, { "occu": 1, "abc": [0.2114173881108085, 0.452683748933301, 0.6660827855827808], "xyz": [1.00511, 2.75698, 6.968940000000001], "species": [{ "occu": 1, "element": "O" }], "label": "O" }, { "occu": 1, "abc": [0.7114184277288014, 0.5473161916279229, 0.8339172123144861], "xyz": [3.38219, 3.33332, 8.72492], "species": [{ "occu": 1, "element": "O" }], "label": "O" }, { "occu": 1, "abc": [0.7885825876997996, 0.9526820772587701, 0.3339168944194627], "xyz": [3.74904, 5.8021199999999995, 3.4936300000000005], "species": [{ "occu": 1, "element": "O" }], "label": "O" }, { "occu": 1, "abc": [ 0.28858365150718424, 0.047317863302453654, 0.16608342347556082 ], "xyz": [1.37197, 0.28818, 1.73766], "species": [{ "occu": 1, "element": "O" }], "label": "O" }, { "occu": 1, "abc": [0.7440972443925447, 0.25000080611787734, 0.09613791622232937], "xyz": [3.537549999999999, 1.52258, 1.00585], "species": [{ "occu": 1, "element": "O" }], "label": "O" }, { "occu": 1, "abc": [0.28858365150718424, 0.452683748933301, 0.16608342347556082], "xyz": [1.37197, 2.75698, 1.73766], "species": [{ "occu": 1, "element": "O" }], "label": "O" }, { "occu": 1, "abc": [0.2114173881108085, 0.047317863302453654, 0.6660827855827808], "xyz": [1.00511, 0.28818, 6.968940000000001], "species": [{ "occu": 1, "element": "O" }], "label": "O" }, { "occu": 1, "abc": [0.2559006279926859, 0.7499991344433464, 0.9038627195677177], "xyz": [1.21659, 4.56772, 9.45673], "species": [{ "occu": 1, "element": "O" }], "label": "O" }, { "occu": 1, "abc": [0.7559016676106785, 0.25000080611787734, 0.5961372783295493], "xyz": [3.5936699999999986, 1.52258, 6.2371300000000005], "species": [{ "occu": 1, "element": "O" }], "label": "O" }, { "occu": 1, "abc": [0.7939989080466804, 0.7499991344433464, 0.5421304884886912], "xyz": [3.77479, 4.56772, 5.67208], "species": [{ "occu": 1, "element": "O" }], "label": "O" }, { "occu": 1, "abc": [0.24409830819992942, 0.7499991344433464, 0.40386240167269416], "xyz": [1.16048, 4.56772, 4.22544], "species": [{ "occu": 1, "element": "O" }], "label": "O" }, { "occu": 1, "abc": [0.7060021073819206, 0.7499991344433464, 0.04213017059366761], "xyz": [3.35644, 4.56772, 0.44079000000000007], "species": [{ "occu": 1, "element": "O" }], "label": "O" }, { "occu": 1, "abc": [0.2939978684286875, 0.25000080611787734, 0.9578695094085758], "xyz": [1.3977099999999996, 1.52258, 10.02178], "species": [{ "occu": 1, "element": "O" }], "label": "O" }, { "occu": 1, "abc": [0.20600106776392774, 0.25000080611787734, 0.4578701473013559], "xyz": [0.9793599999999998, 1.52258, 4.7905], "species": [{ "occu": 1, "element": "O" }], "label": "O" }, { "occu": 1, "abc": [0.7114184277288014, 0.9526820772587701, 0.8339172123144861], "xyz": [3.38219, 5.8021199999999995, 8.72492], "species": [{ "occu": 1, "element": "O" }], "label": "O" }, { "occu": 1, "abc": [0.5793611756830275, 0.7499991344433464, 0.9051119342269868], "xyz": [2.75437, 4.56772, 9.4698], "species": [{ "occu": 1, "element": "P" }], "label": "P" }, { "occu": 1, "abc": [0.9206377363201961, 0.7499991344433464, 0.40511161633196324], "xyz": [4.37685, 4.56772, 4.23851], "species": [{ "occu": 1, "element": "P" }], "label": "P" }, { "occu": 1, "abc": [ 0.42063880012758065, 0.25000080611787734, 0.09488774577525667 ], "xyz": [1.9997799999999994, 1.52258, 0.99277], "species": [{ "occu": 1, "element": "P" }], "label": "P" }, { "occu": 1, "abc": [0.07936223949041206, 0.25000080611787734, 0.5948880636702801], "xyz": [0.3773, 1.52258, 6.22406], "species": [{ "occu": 1, "element": "P" }], "label": "P" }, { "occu": 1, "abc": [0.021860899947623972, 0.7499991344433464, 0.7185507570598875], "xyz": [0.10393, 4.56772, 7.517890000000001], "species": [{ "occu": 1, "element": "Fe" }], "label": "Fe" }, { "occu": 1, "abc": [0.478135932819614, 0.7499991344433464, 0.21855043916486389], "xyz": [2.27313, 4.56772, 2.2866], "species": [{ "occu": 1, "element": "Fe" }], "label": "Fe" }, { "occu": 1, "abc": [0.9781369724376069, 0.25000080611787734, 0.2814489229423561], "xyz": [4.65021, 1.52258, 2.9446800000000004], "species": [{ "occu": 1, "element": "Fe" }], "label": "Fe" }, { "occu": 1, "abc": [0.5218619395656168, 0.25000080611787734, 0.7814492408373795], "xyz": [2.48101, 1.52258, 8.17597], "species": [{ "occu": 1, "element": "Fe" }], "label": "Fe" }] } structure = Structure.from_dict(structure_dict) self.structure = structure trans = [SubstitutionTransformation({"Li": "Na"})] self.trans = TransformedStructure(structure, trans) def test_append_transformation(self): t = SubstitutionTransformation({"Fe": "Mn"}) self.trans.append_transformation(t) self.assertEqual( "NaMnPO4", self.trans.final_structure.composition.reduced_formula) self.assertEqual(len(self.trans.structures), 3) coords = list() coords.append([0, 0, 0]) coords.append([0.75, 0.5, 0.75]) lattice = [[3.8401979337, 0.00, 0.00], [1.9200989668, 3.3257101909, 0.00], [0.00, -2.2171384943, 3.1355090603]] struct = Structure(lattice, ["Si4+", "Si4+"], coords) ts = TransformedStructure(struct, []) ts.append_transformation( SupercellTransformation.from_scaling_factors(2, 1, 1)) alt = ts.append_transformation( PartialRemoveSpecieTransformation( 'Si4+', 0.5, algo=PartialRemoveSpecieTransformation.ALGO_COMPLETE), 5) self.assertEqual(len(alt), 2) def test_append_filter(self): f3 = ContainsSpecieFilter(['O2-'], strict_compare=True, AND=False) self.trans.append_filter(f3) def test_get_vasp_input(self): vaspis = MPVaspInputSet() self.assertEqual( "Na_pv\nO\nP\nFe_pv", self.trans.get_vasp_input(vaspis, False)['POTCAR.spec']) self.assertEqual(len(self.trans.structures), 2) def test_final_structure(self): self.assertEqual( "NaFePO4", self.trans.final_structure.composition.reduced_formula) def test_from_dict(self): d = json.load(open(os.path.join(test_dir, 'transformations.json'), 'r')) d['other_parameters'] = {'tags': ['test']} ts = TransformedStructure.from_dict(d) ts.set_parameter('author', 'Will') ts.append_transformation(SubstitutionTransformation({"Fe": "Mn"})) self.assertEqual("MnPO4", ts.final_structure.composition.reduced_formula) self.assertEqual(ts.other_parameters, { 'author': 'Will', 'tags': ['test'] }) def test_undo_and_redo_last_change(self): trans = [ SubstitutionTransformation({"Li": "Na"}), SubstitutionTransformation({"Fe": "Mn"}) ] ts = TransformedStructure(self.structure, trans) self.assertEqual("NaMnPO4", ts.final_structure.composition.reduced_formula) ts.undo_last_change() self.assertEqual("NaFePO4", ts.final_structure.composition.reduced_formula) ts.undo_last_change() self.assertEqual("LiFePO4", ts.final_structure.composition.reduced_formula) self.assertRaises(IndexError, ts.undo_last_change) ts.redo_next_change() self.assertEqual("NaFePO4", ts.final_structure.composition.reduced_formula) ts.redo_next_change() self.assertEqual("NaMnPO4", ts.final_structure.composition.reduced_formula) self.assertRaises(IndexError, ts.redo_next_change) #Make sure that this works with filters. f3 = ContainsSpecieFilter(['O2-'], strict_compare=True, AND=False) ts.append_filter(f3) ts.undo_last_change() ts.redo_next_change() def test_to_dict(self): d = self.trans.to_dict self.assertIn('last_modified', d) self.assertIn('history', d) self.assertIn('version', d) self.assertEqual(Structure.from_dict(d).formula, 'Na4 Fe4 P4 O16')
def pred_from_structures(self, target_species, structures_list, remove_duplicates=True): """ performs a structure prediction targeting compounds containing the target_species and based on a list of structure (those structures can for instance come from a database like the ICSD). It will return all the structures formed by ionic substitutions with a probability higher than the threshold Args: target_species: a list of species with oxidation states e.g., [Specie('Li',1),Specie('Ni',2), Specie('O',-2)] structures_list: a list of dictionnary of the form {'structure':Structure object ,'id':some id where it comes from} the id can for instance refer to an ICSD id Returns: a list of TransformedStructure objects. """ result = [] transmuter = StandardTransmuter([]) if len(list(set(target_species) & set(self.get_allowed_species()))) \ != len(target_species): raise ValueError("the species in target_species are not allowed" + "for the probability model you are using") for permut in itertools.permutations(target_species): for s in structures_list: #check if: species are in the domain, #and the probability of subst. is above the threshold els = s['structure'].composition.elements if len(els) == len(permut) and \ len(list(set(els) & set(self.get_allowed_species()))) == \ len(els) and self._sp.cond_prob_list(permut, els) > \ self._threshold: clean_subst = {els[i]: permut[i] for i in xrange(0, len(els)) if els[i] != permut[i]} if len(clean_subst) == 0: continue transf = SubstitutionTransformation(clean_subst) if Substitutor._is_charge_balanced( transf.apply_transformation(s['structure'])): ts = TransformedStructure( s['structure'], [transf], history=[s['id']], other_parameters={ 'type': 'structure_prediction', 'proba': self._sp.cond_prob_list(permut, els)} ) result.append(ts) transmuter.append_transformed_structures([ts]) if remove_duplicates: transmuter.apply_filter(RemoveDuplicatesFilter( symprec=self._symprec)) return transmuter.transformed_structures
def generate_ewald_orderings(path, choose_file, oxidation_states, num_structures): """ DESCRIPTION: Given a disordered CIF structure with at least one crystallographic site that is shared by more than one element, all permutations will have their electrostatic energy calculated via an Ewald summation, given that all ion charges are specified. Ordered CIF structures will be generated, postpended with a number that indicates the stability ranking of the structure. For example, if a CIF file called "Na2Mn2Fe(VO4)3.cif" is inputted with num_structures=3, then the function will generate 3 ordered output files, "Na2Mn2Fe(VO4)3-ewald-1", "Na2Mn2Fe(VO4)3-ewald-2", and "Na2Mn2Fe(VO4)3-ewald-3", with "Na2Mn2Fe(VO4)3-ewald-1" being the most stable and "Na2Mn2Fe(VO4)3-ewald-3" being the least stable. Note that this function does not take into account the symmetry of the crystal, and thus it may give several structures which are symmetrically identical under a space group. Use "find_unique_structures" to isolate unique orderings. PARAMETERS: path: string The file path to the CIF file. The CIF file must be a disordered structure, or else an error will occur. A disordered structure will have one site that is occupied by more than one element, with occupancies less than 1: i.e. Fe at 0,0,0.5 with an occupancy of 0.75, and Mn at the same site 0,0,0.5 with an occupancy of 0.25. This function cannot handle multivalent elements, for example it cannot handle a structure that has Mn in both the 2+ and 3+ redox state. choose_file: boolean Setting this parameter to True brings up the file explorer dialog for the user to manually select the CIF file oxidation_states: dictionary A dictionary that maps each element in the structure to a particular oxidation state. E.g. {"Fe": 3, "Mn": 2, "O": -2, "V": 5, "Na": 1, "Al":3} Make sure that all elements in the structure is assigned an oxidation state. It is ok to add more elements than needed. num_structures: int The number of strcutures to be outputted by the function. There can be hundreds or thousands of candidate structures, however in practice only the first few (or even only the first, most stable) structures are needed. RETURNS: None """ # open file dialog if file is to be manually chosen if choose_file: root = tk.Tk() root.withdraw() path = filedialog.askopenfilename() #Read cif file cryst = Structure.from_file(path) analyzer = SpacegroupAnalyzer(cryst) space_group = analyzer.get_space_group_symbol() print(space_group) symm_struct = analyzer.get_symmetrized_structure() cryst = TransformedStructure(symm_struct) #Create Oxidation State Transform oxidation_transform = OxidationStateDecorationTransformation( oxidation_states) #Create Ewald Ordering Transform object which will be passed into the transmuter ordering_transform = OrderDisorderedStructureTransformation( symmetrized_structures=True) # apply the order-disorder transform on the structure for any site that has fractional occupancies transmuter = StandardTransmuter([cryst], [oxidation_transform, ordering_transform], extend_collection=num_structures) print("Ewald optimization successful!") num_structures = len(transmuter.transformed_structures) for i in range(num_structures): newCryst = transmuter.transformed_structures[i].final_structure #Save to CIF structure_name = os.path.splitext(os.path.basename(path))[0] save_directory = structure_name if not os.path.isdir(save_directory): os.mkdir(save_directory) filename = structure_name + '/' + structure_name + '-ewald' + '-%i' % ( i + 1) w = CifWriter(newCryst) w.write_file(filename + '.cif') print("Cif file saved to {}.cif".format(filename)) #Save to POSCAR poscar = Poscar(newCryst) poscar.write_file(filename) print("POSCAR file saved to {}".format(filename))
def pred_from_structures(self, target_species, structures_list, remove_duplicates=True, remove_existing=False): """ performs a structure prediction targeting compounds containing all of the target_species, based on a list of structure (those structures can for instance come from a database like the ICSD). It will return all the structures formed by ionic substitutions with a probability higher than the threshold Notes: If the default probability model is used, input structures must be oxidation state decorated. See AutoOxiStateDecorationTransformation This method does not change the number of species in a structure. i.e if the number of target species is 3, only input structures containing 3 species will be considered. Args: target_species: a list of species with oxidation states e.g., [Specie('Li',1),Specie('Ni',2), Specie('O',-2)] structures_list: a list of dictionnary of the form {'structure':Structure object ,'id':some id where it comes from} the id can for instance refer to an ICSD id. remove_duplicates: if True, the duplicates in the predicted structures will be removed remove_existing: if True, the predicted structures that already exist in the structures_list will be removed Returns: a list of TransformedStructure objects. """ target_species = get_el_sp(target_species) result = [] transmuter = StandardTransmuter([]) if len(list(set(target_species) & set(self.get_allowed_species()))) \ != len(target_species): raise ValueError("the species in target_species are not allowed " + "for the probability model you are using") for permut in itertools.permutations(target_species): for s in structures_list: # check if: species are in the domain, # and the probability of subst. is above the threshold els = s['structure'].composition.elements if len(els) == len(permut) and len(list(set(els) & set(self.get_allowed_species()))) == \ len(els) and self._sp.cond_prob_list(permut, els) > self._threshold: clean_subst = { els[i]: permut[i] for i in range(0, len(els)) if els[i] != permut[i] } if len(clean_subst) == 0: continue transf = SubstitutionTransformation(clean_subst) if Substitutor._is_charge_balanced( transf.apply_transformation(s['structure'])): ts = TransformedStructure(s['structure'], [transf], history=[{ "source": s['id'] }], other_parameters={ 'type': 'structure_prediction', 'proba': self._sp.cond_prob_list( permut, els) }) result.append(ts) transmuter.append_transformed_structures([ts]) if remove_duplicates: transmuter.apply_filter( RemoveDuplicatesFilter(symprec=self._symprec)) if remove_existing: # Make the list of structures from structures_list that corresponds to the # target species chemsys = list(set([sp.symbol for sp in target_species])) structures_list_target = [ st['structure'] for st in structures_list if Substitutor._is_from_chemical_system( chemsys, st['structure']) ] transmuter.apply_filter( RemoveExistingFilter(structures_list_target, symprec=self._symprec)) return transmuter.transformed_structures
class TransformedStructureTest(unittest.TestCase): def setUp(self): structure_dict = { "lattice": { "a": 4.754150115, "volume": 302.935463898643, "c": 10.462573348, "b": 6.090300362, "matrix": [[4.754150115, 0.0, 0.0], [0.0, 6.090300362, 0.0], [0.0, 0.0, 10.462573348]], "alpha": 90.0, "beta": 90.0, "gamma": 90.0, }, "sites": [ { "occu": 1, "abc": [0.0, 0.0, 0.0], "xyz": [0.0, 0.0, 0.0], "species": [{"occu": 1, "element": "Li"}], "label": "Li", }, { "occu": 1, "abc": [0.5000010396179928, 0.0, 0.5000003178950235], "xyz": [2.37708, 0.0, 5.23129], "species": [{"occu": 1, "element": "Li"}], "label": "Li", }, { "occu": 1, "abc": [0.0, 0.49999997028061194, 0.0], "xyz": [0.0, 3.04515, 0.0], "species": [{"occu": 1, "element": "Li"}], "label": "Li", }, { "occu": 1, "abc": [0.5000010396179928, 0.49999997028061194, 0.5000003178950235], "xyz": [2.37708, 3.04515, 5.23129], "species": [{"occu": 1, "element": "Li"}], "label": "Li", }, { "occu": 1, "abc": [0.7885825876997996, 0.5473161916279229, 0.3339168944194627], "xyz": [3.74904, 3.33332, 3.4936300000000005], "species": [{"occu": 1, "element": "O"}], "label": "O", }, { "occu": 1, "abc": [0.2114173881108085, 0.452683748933301, 0.6660827855827808], "xyz": [1.00511, 2.75698, 6.968940000000001], "species": [{"occu": 1, "element": "O"}], "label": "O", }, { "occu": 1, "abc": [0.7114184277288014, 0.5473161916279229, 0.8339172123144861], "xyz": [3.38219, 3.33332, 8.72492], "species": [{"occu": 1, "element": "O"}], "label": "O", }, { "occu": 1, "abc": [0.7885825876997996, 0.9526820772587701, 0.3339168944194627], "xyz": [3.74904, 5.8021199999999995, 3.4936300000000005], "species": [{"occu": 1, "element": "O"}], "label": "O", }, { "occu": 1, "abc": [0.28858365150718424, 0.047317863302453654, 0.16608342347556082], "xyz": [1.37197, 0.28818, 1.73766], "species": [{"occu": 1, "element": "O"}], "label": "O", }, { "occu": 1, "abc": [0.7440972443925447, 0.25000080611787734, 0.09613791622232937], "xyz": [3.537549999999999, 1.52258, 1.00585], "species": [{"occu": 1, "element": "O"}], "label": "O", }, { "occu": 1, "abc": [0.28858365150718424, 0.452683748933301, 0.16608342347556082], "xyz": [1.37197, 2.75698, 1.73766], "species": [{"occu": 1, "element": "O"}], "label": "O", }, { "occu": 1, "abc": [0.2114173881108085, 0.047317863302453654, 0.6660827855827808], "xyz": [1.00511, 0.28818, 6.968940000000001], "species": [{"occu": 1, "element": "O"}], "label": "O", }, { "occu": 1, "abc": [0.2559006279926859, 0.7499991344433464, 0.9038627195677177], "xyz": [1.21659, 4.56772, 9.45673], "species": [{"occu": 1, "element": "O"}], "label": "O", }, { "occu": 1, "abc": [0.7559016676106785, 0.25000080611787734, 0.5961372783295493], "xyz": [3.5936699999999986, 1.52258, 6.2371300000000005], "species": [{"occu": 1, "element": "O"}], "label": "O", }, { "occu": 1, "abc": [0.7939989080466804, 0.7499991344433464, 0.5421304884886912], "xyz": [3.77479, 4.56772, 5.67208], "species": [{"occu": 1, "element": "O"}], "label": "O", }, { "occu": 1, "abc": [0.24409830819992942, 0.7499991344433464, 0.40386240167269416], "xyz": [1.16048, 4.56772, 4.22544], "species": [{"occu": 1, "element": "O"}], "label": "O", }, { "occu": 1, "abc": [0.7060021073819206, 0.7499991344433464, 0.04213017059366761], "xyz": [3.35644, 4.56772, 0.44079000000000007], "species": [{"occu": 1, "element": "O"}], "label": "O", }, { "occu": 1, "abc": [0.2939978684286875, 0.25000080611787734, 0.9578695094085758], "xyz": [1.3977099999999996, 1.52258, 10.02178], "species": [{"occu": 1, "element": "O"}], "label": "O", }, { "occu": 1, "abc": [0.20600106776392774, 0.25000080611787734, 0.4578701473013559], "xyz": [0.9793599999999998, 1.52258, 4.7905], "species": [{"occu": 1, "element": "O"}], "label": "O", }, { "occu": 1, "abc": [0.7114184277288014, 0.9526820772587701, 0.8339172123144861], "xyz": [3.38219, 5.8021199999999995, 8.72492], "species": [{"occu": 1, "element": "O"}], "label": "O", }, { "occu": 1, "abc": [0.5793611756830275, 0.7499991344433464, 0.9051119342269868], "xyz": [2.75437, 4.56772, 9.4698], "species": [{"occu": 1, "element": "P"}], "label": "P", }, { "occu": 1, "abc": [0.9206377363201961, 0.7499991344433464, 0.40511161633196324], "xyz": [4.37685, 4.56772, 4.23851], "species": [{"occu": 1, "element": "P"}], "label": "P", }, { "occu": 1, "abc": [0.42063880012758065, 0.25000080611787734, 0.09488774577525667], "xyz": [1.9997799999999994, 1.52258, 0.99277], "species": [{"occu": 1, "element": "P"}], "label": "P", }, { "occu": 1, "abc": [0.07936223949041206, 0.25000080611787734, 0.5948880636702801], "xyz": [0.3773, 1.52258, 6.22406], "species": [{"occu": 1, "element": "P"}], "label": "P", }, { "occu": 1, "abc": [0.021860899947623972, 0.7499991344433464, 0.7185507570598875], "xyz": [0.10393, 4.56772, 7.517890000000001], "species": [{"occu": 1, "element": "Fe"}], "label": "Fe", }, { "occu": 1, "abc": [0.478135932819614, 0.7499991344433464, 0.21855043916486389], "xyz": [2.27313, 4.56772, 2.2866], "species": [{"occu": 1, "element": "Fe"}], "label": "Fe", }, { "occu": 1, "abc": [0.9781369724376069, 0.25000080611787734, 0.2814489229423561], "xyz": [4.65021, 1.52258, 2.9446800000000004], "species": [{"occu": 1, "element": "Fe"}], "label": "Fe", }, { "occu": 1, "abc": [0.5218619395656168, 0.25000080611787734, 0.7814492408373795], "xyz": [2.48101, 1.52258, 8.17597], "species": [{"occu": 1, "element": "Fe"}], "label": "Fe", }, ], } structure = Structure.from_dict(structure_dict) self.structure = structure trans = [SubstitutionTransformation({"Li": "Na"})] self.trans = TransformedStructure(structure, trans) def test_append_transformation(self): t = SubstitutionTransformation({"Fe": "Mn"}) self.trans.append_transformation(t) self.assertEqual("NaMnPO4", self.trans.final_structure.composition.reduced_formula) self.assertEqual(len(self.trans.structures), 3) coords = list() coords.append([0, 0, 0]) coords.append([0.75, 0.5, 0.75]) lattice = [[3.8401979337, 0.00, 0.00], [1.9200989668, 3.3257101909, 0.00], [0.00, -2.2171384943, 3.1355090603]] struct = Structure(lattice, ["Si4+", "Si4+"], coords) ts = TransformedStructure(struct, []) ts.append_transformation(SupercellTransformation.from_scaling_factors(2, 1, 1)) alt = ts.append_transformation( PartialRemoveSpecieTransformation("Si4+", 0.5, algo=PartialRemoveSpecieTransformation.ALGO_COMPLETE), 5 ) self.assertEqual(len(alt), 2) def test_append_filter(self): f3 = ContainsSpecieFilter(["O2-"], strict_compare=True, AND=False) self.trans.append_filter(f3) def test_get_vasp_input(self): SETTINGS["VASP_PSP_DIR"] = os.path.abspath( os.path.join(os.path.dirname(__file__), "..", "..", "..", "test_files") ) potcar = self.trans.get_vasp_input(MPRelaxSet)["POTCAR"] self.assertEqual("Na_pv\nFe_pv\nP\nO", "\n".join([p.symbol for p in potcar])) self.assertEqual(len(self.trans.structures), 2) def test_final_structure(self): self.assertEqual("NaFePO4", self.trans.final_structure.composition.reduced_formula) def test_from_dict(self): d = json.load(open(os.path.join(test_dir, "transformations.json"), "r")) d["other_parameters"] = {"tags": ["test"]} ts = TransformedStructure.from_dict(d) ts.other_parameters["author"] = "Will" ts.append_transformation(SubstitutionTransformation({"Fe": "Mn"})) self.assertEqual("MnPO4", ts.final_structure.composition.reduced_formula) self.assertEqual(ts.other_parameters, {"author": "Will", "tags": ["test"]}) def test_undo_and_redo_last_change(self): trans = [SubstitutionTransformation({"Li": "Na"}), SubstitutionTransformation({"Fe": "Mn"})] ts = TransformedStructure(self.structure, trans) self.assertEqual("NaMnPO4", ts.final_structure.composition.reduced_formula) ts.undo_last_change() self.assertEqual("NaFePO4", ts.final_structure.composition.reduced_formula) ts.undo_last_change() self.assertEqual("LiFePO4", ts.final_structure.composition.reduced_formula) self.assertRaises(IndexError, ts.undo_last_change) ts.redo_next_change() self.assertEqual("NaFePO4", ts.final_structure.composition.reduced_formula) ts.redo_next_change() self.assertEqual("NaMnPO4", ts.final_structure.composition.reduced_formula) self.assertRaises(IndexError, ts.redo_next_change) # Make sure that this works with filters. f3 = ContainsSpecieFilter(["O2-"], strict_compare=True, AND=False) ts.append_filter(f3) ts.undo_last_change() ts.redo_next_change() def test_as_dict(self): self.trans.set_parameter("author", "will") d = self.trans.as_dict() self.assertIn("last_modified", d) self.assertIn("history", d) self.assertIn("version", d) self.assertIn("author", d["other_parameters"]) self.assertEqual(Structure.from_dict(d).formula, "Na4 Fe4 P4 O16") def test_snl(self): self.trans.set_parameter("author", "will") with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") snl = self.trans.to_snl([("will", "*****@*****.**")]) self.assertEqual(len(w), 1, "Warning not raised on type conversion " "with other_parameters") ts = TransformedStructure.from_snl(snl) self.assertEqual(ts.history[-1]["@class"], "SubstitutionTransformation") h = ("testname", "testURL", {"test": "testing"}) snl = StructureNL(ts.final_structure, [("will", "*****@*****.**")], history=[h]) snl = TransformedStructure.from_snl(snl).to_snl([("notwill", "*****@*****.**")]) self.assertEqual(snl.history, [h]) self.assertEqual(snl.authors, [("notwill", "*****@*****.**")])
class TransformedStructureTest(unittest.TestCase): def setUp(self): structure_dict = {"lattice": {"a": 4.754150115, "volume": 302.935463898643, "c": 10.462573348, "b": 6.090300362, "matrix": [[4.754150115, 0.0, 0.0], [0.0, 6.090300362, 0.0], [0.0, 0.0, 10.462573348]], "alpha": 90.0, "beta": 90.0, "gamma": 90.0}, "sites": [{"occu": 1, "abc": [0.0, 0.0, 0.0], "xyz": [0.0, 0.0, 0.0], "species": [{"occu": 1, "element": "Li"}], "label": "Li"}, {"occu": 1, "abc": [0.5000010396179928, 0.0, 0.5000003178950235], "xyz": [2.37708, 0.0, 5.23129], "species": [{"occu": 1, "element": "Li"}], "label": "Li"}, {"occu": 1, "abc": [0.0, 0.49999997028061194, 0.0], "xyz": [0.0, 3.04515, 0.0], "species": [{"occu": 1, "element": "Li"}], "label": "Li"}, {"occu": 1, "abc": [0.5000010396179928, 0.49999997028061194, 0.5000003178950235], "xyz": [2.37708, 3.04515, 5.23129], "species": [{"occu": 1, "element": "Li"}], "label": "Li"}, {"occu": 1, "abc": [0.7885825876997996, 0.5473161916279229, 0.3339168944194627], "xyz": [3.74904, 3.33332, 3.4936300000000005], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.2114173881108085, 0.452683748933301, 0.6660827855827808], "xyz": [1.00511, 2.75698, 6.968940000000001], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.7114184277288014, 0.5473161916279229, 0.8339172123144861], "xyz": [3.38219, 3.33332, 8.72492], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.7885825876997996, 0.9526820772587701, 0.3339168944194627], "xyz": [3.74904, 5.8021199999999995, 3.4936300000000005], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.28858365150718424, 0.047317863302453654, 0.16608342347556082], "xyz": [1.37197, 0.28818, 1.73766], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.7440972443925447, 0.25000080611787734, 0.09613791622232937], "xyz": [3.537549999999999, 1.52258, 1.00585], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.28858365150718424, 0.452683748933301, 0.16608342347556082], "xyz": [1.37197, 2.75698, 1.73766], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.2114173881108085, 0.047317863302453654, 0.6660827855827808], "xyz": [1.00511, 0.28818, 6.968940000000001], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.2559006279926859, 0.7499991344433464, 0.9038627195677177], "xyz": [1.21659, 4.56772, 9.45673], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.7559016676106785, 0.25000080611787734, 0.5961372783295493], "xyz": [3.5936699999999986, 1.52258, 6.2371300000000005], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.7939989080466804, 0.7499991344433464, 0.5421304884886912], "xyz": [3.77479, 4.56772, 5.67208], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.24409830819992942, 0.7499991344433464, 0.40386240167269416], "xyz": [1.16048, 4.56772, 4.22544], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.7060021073819206, 0.7499991344433464, 0.04213017059366761], "xyz": [3.35644, 4.56772, 0.44079000000000007], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.2939978684286875, 0.25000080611787734, 0.9578695094085758], "xyz": [1.3977099999999996, 1.52258, 10.02178], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.20600106776392774, 0.25000080611787734, 0.4578701473013559], "xyz": [0.9793599999999998, 1.52258, 4.7905], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.7114184277288014, 0.9526820772587701, 0.8339172123144861], "xyz": [3.38219, 5.8021199999999995, 8.72492], "species": [{"occu": 1, "element": "O"}], "label": "O"}, {"occu": 1, "abc": [0.5793611756830275, 0.7499991344433464, 0.9051119342269868], "xyz": [2.75437, 4.56772, 9.4698], "species": [{"occu": 1, "element": "P"}], "label": "P"}, {"occu": 1, "abc": [0.9206377363201961, 0.7499991344433464, 0.40511161633196324], "xyz": [4.37685, 4.56772, 4.23851], "species": [{"occu": 1, "element": "P"}], "label": "P"}, {"occu": 1, "abc": [0.42063880012758065, 0.25000080611787734, 0.09488774577525667], "xyz": [1.9997799999999994, 1.52258, 0.99277], "species": [{"occu": 1, "element": "P"}], "label": "P"}, {"occu": 1, "abc": [0.07936223949041206, 0.25000080611787734, 0.5948880636702801], "xyz": [0.3773, 1.52258, 6.22406], "species": [{"occu": 1, "element": "P"}], "label": "P"}, {"occu": 1, "abc": [0.021860899947623972, 0.7499991344433464, 0.7185507570598875], "xyz": [0.10393, 4.56772, 7.517890000000001], "species": [{"occu": 1, "element": "Fe"}], "label": "Fe"}, {"occu": 1, "abc": [0.478135932819614, 0.7499991344433464, 0.21855043916486389], "xyz": [2.27313, 4.56772, 2.2866], "species": [{"occu": 1, "element": "Fe"}], "label": "Fe"}, {"occu": 1, "abc": [0.9781369724376069, 0.25000080611787734, 0.2814489229423561], "xyz": [4.65021, 1.52258, 2.9446800000000004], "species": [{"occu": 1, "element": "Fe"}], "label": "Fe"}, {"occu": 1, "abc": [0.5218619395656168, 0.25000080611787734, 0.7814492408373795], "xyz": [2.48101, 1.52258, 8.17597], "species": [{"occu": 1, "element": "Fe"}], "label": "Fe"}]} structure = Structure.from_dict(structure_dict) self.structure = structure trans = [] trans.append(SubstitutionTransformation({"Li": "Na"})) self.trans = TransformedStructure(structure, trans) def test_append_transformation(self): t = SubstitutionTransformation({"Fe": "Mn"}) self.trans.append_transformation(t) self.assertEqual("NaMnPO4", self.trans.final_structure.composition .reduced_formula) self.assertEqual(len(self.trans.structures), 3) coords = list() coords.append([0, 0, 0]) coords.append([0.75, 0.5, 0.75]) lattice = [[3.8401979337, 0.00, 0.00], [1.9200989668, 3.3257101909, 0.00], [0.00, -2.2171384943, 3.1355090603]] struct = Structure(lattice, ["Si4+", "Si4+"], coords) ts = TransformedStructure(struct, []) ts.append_transformation(SupercellTransformation .from_scaling_factors(2, 1, 1)) alt = ts.append_transformation( PartialRemoveSpecieTransformation('Si4+', 0.5, algo=PartialRemoveSpecieTransformation.ALGO_COMPLETE), 5 ) self.assertEqual(len(alt), 2) def test_append_filter(self): f3 = ContainsSpecieFilter(['O2-'], strict_compare=True, AND=False) self.trans.append_filter(f3) def test_get_vasp_input(self): vaspis = MaterialsProjectVaspInputSet() self.assertEqual("Na_pv\nO\nP\nFe_pv", self.trans.get_vasp_input(vaspis, False)['POTCAR.spec']) self.assertEqual(len(self.trans.structures), 2) def test_final_structure(self): self.assertEqual("NaFePO4", self.trans.final_structure.composition .reduced_formula) def test_from_dict(self): d = json.load(open(os.path.join(test_dir, 'transformations.json'), 'r')) d['other_parameters'] = {'tags': ['test']} ts = TransformedStructure.from_dict(d) ts.set_parameter('author', 'Will') ts.append_transformation(SubstitutionTransformation({"Fe": "Mn"})) self.assertEqual("MnPO4", ts.final_structure.composition.reduced_formula) self.assertEqual(ts.other_parameters, {'author': 'Will', 'tags': ['test']}) def test_undo_and_redo_last_change(self): trans = [] trans.append(SubstitutionTransformation({"Li": "Na"})) trans.append(SubstitutionTransformation({"Fe": "Mn"})) ts = TransformedStructure(self.structure, trans) self.assertEqual("NaMnPO4", ts.final_structure.composition.reduced_formula) ts.undo_last_change() self.assertEqual("NaFePO4", ts.final_structure.composition.reduced_formula) ts.undo_last_change() self.assertEqual("LiFePO4", ts.final_structure.composition.reduced_formula) self.assertRaises(IndexError, ts.undo_last_change) ts.redo_next_change() self.assertEqual("NaFePO4", ts.final_structure.composition.reduced_formula) ts.redo_next_change() self.assertEqual("NaMnPO4", ts.final_structure.composition.reduced_formula) self.assertRaises(IndexError, ts.redo_next_change) #Make sure that this works with filters. f3 = ContainsSpecieFilter(['O2-'], strict_compare=True, AND=False) ts.append_filter(f3) ts.undo_last_change() ts.redo_next_change() def test_to_dict(self): d = self.trans.to_dict self.assertIn('last_modified', d) self.assertIn('history', d) self.assertIn('version', d) self.assertEqual(Structure.from_dict(d).formula, 'Na4 Fe4 P4 O16')
def __init__(self, poscar_string, transformations=None, extend_collection=False): tstruct = TransformedStructure.from_poscar_string(poscar_string, []) super(PoscarTransmuter, self).__init__([tstruct], transformations, extend_collection=extend_collection)
class TransformedStructureTest(PymatgenTest): def setUp(self): structure = PymatgenTest.get_structure("LiFePO4") self.structure = structure trans = [SubstitutionTransformation({"Li": "Na"})] self.trans = TransformedStructure(structure, trans) def test_append_transformation(self): t = SubstitutionTransformation({"Fe": "Mn"}) self.trans.append_transformation(t) self.assertEqual("NaMnPO4", self.trans.final_structure.composition .reduced_formula) self.assertEqual(len(self.trans.structures), 3) coords = list() coords.append([0, 0, 0]) coords.append([0.75, 0.5, 0.75]) lattice = [[3.8401979337, 0.00, 0.00], [1.9200989668, 3.3257101909, 0.00], [0.00, -2.2171384943, 3.1355090603]] struct = Structure(lattice, ["Si4+", "Si4+"], coords) ts = TransformedStructure(struct, []) ts.append_transformation(SupercellTransformation .from_scaling_factors(2, 1, 1)) alt = ts.append_transformation( PartialRemoveSpecieTransformation( 'Si4+', 0.5, algo=PartialRemoveSpecieTransformation.ALGO_COMPLETE), 5) self.assertEqual(len(alt), 2) def test_append_filter(self): f3 = ContainsSpecieFilter(['O2-'], strict_compare=True, AND=False) self.trans.append_filter(f3) def test_get_vasp_input(self): SETTINGS["PMG_VASP_PSP_DIR"] = os.path.abspath( os.path.join(os.path.dirname(__file__), "..", "..", "..", "test_files")) potcar = self.trans.get_vasp_input(MPRelaxSet)['POTCAR'] self.assertEqual("Na_pv\nFe_pv\nP\nO", "\n".join([p.symbol for p in potcar])) self.assertEqual(len(self.trans.structures), 2) def test_final_structure(self): self.assertEqual("NaFePO4", self.trans.final_structure.composition .reduced_formula) def test_from_dict(self): d = json.load(open(os.path.join(test_dir, 'transformations.json'), 'r')) d['other_parameters'] = {'tags': ['test']} ts = TransformedStructure.from_dict(d) ts.other_parameters['author'] = 'Will' ts.append_transformation(SubstitutionTransformation({"Fe": "Mn"})) self.assertEqual("MnPO4", ts.final_structure.composition.reduced_formula) self.assertEqual(ts.other_parameters, {'author': 'Will', 'tags': ['test']}) def test_undo_and_redo_last_change(self): trans = [SubstitutionTransformation({"Li": "Na"}), SubstitutionTransformation({"Fe": "Mn"})] ts = TransformedStructure(self.structure, trans) self.assertEqual("NaMnPO4", ts.final_structure.composition.reduced_formula) ts.undo_last_change() self.assertEqual("NaFePO4", ts.final_structure.composition.reduced_formula) ts.undo_last_change() self.assertEqual("LiFePO4", ts.final_structure.composition.reduced_formula) self.assertRaises(IndexError, ts.undo_last_change) ts.redo_next_change() self.assertEqual("NaFePO4", ts.final_structure.composition.reduced_formula) ts.redo_next_change() self.assertEqual("NaMnPO4", ts.final_structure.composition.reduced_formula) self.assertRaises(IndexError, ts.redo_next_change) #Make sure that this works with filters. f3 = ContainsSpecieFilter(['O2-'], strict_compare=True, AND=False) ts.append_filter(f3) ts.undo_last_change() ts.redo_next_change() def test_as_dict(self): self.trans.set_parameter('author', 'will') d = self.trans.as_dict() self.assertIn('last_modified', d) self.assertIn('history', d) self.assertIn('version', d) self.assertIn('author', d['other_parameters']) self.assertEqual(Structure.from_dict(d).formula, 'Na4 Fe4 P4 O16') def test_snl(self): self.trans.set_parameter('author', 'will') with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") snl = self.trans.to_snl([('will', '*****@*****.**')]) self.assertEqual(len(w), 1, 'Warning not raised on type conversion ' 'with other_parameters') ts = TransformedStructure.from_snl(snl) self.assertEqual(ts.history[-1]['@class'], 'SubstitutionTransformation') h = ('testname', 'testURL', {'test' : 'testing'}) snl = StructureNL(ts.final_structure,[('will', '*****@*****.**')], history = [h]) snl = TransformedStructure.from_snl(snl).to_snl([('notwill', '*****@*****.**')]) self.assertEqual(snl.history, [h]) self.assertEqual(snl.authors, [('notwill', '*****@*****.**')])
def test_undo_and_redo_last_change(self): trans = [SubstitutionTransformation({"Li": "Na"}), SubstitutionTransformation({"Fe": "Mn"})] ts = TransformedStructure(self.structure, trans) self.assertEqual("NaMnPO4", ts.final_structure.composition.reduced_formula) ts.undo_last_change() self.assertEqual("NaFePO4", ts.final_structure.composition.reduced_formula) ts.undo_last_change() self.assertEqual("LiFePO4", ts.final_structure.composition.reduced_formula) self.assertRaises(IndexError, ts.undo_last_change) ts.redo_next_change() self.assertEqual("NaFePO4", ts.final_structure.composition.reduced_formula) ts.redo_next_change() self.assertEqual("NaMnPO4", ts.final_structure.composition.reduced_formula) self.assertRaises(IndexError, ts.redo_next_change) # Make sure that this works with filters. f3 = ContainsSpecieFilter(["O2-"], strict_compare=True, AND=False) ts.append_filter(f3) ts.undo_last_change() ts.redo_next_change()