def test_gams_expanded_connectors(self): m = ConcreteModel() m.x = Var() m.y = Var() m.CON1 = Connector() m.CON1.add(m.x, 'v') m.CON2 = Connector() m.CON2.add(m.y, 'v') m.c = Constraint(expr=m.CON1 + m.CON2 >= 10) TransformationFactory("core.expand_connectors").apply_to(m) m.o = Objective(expr=m.x) os = StringIO() io_options = dict(symbolic_solver_labels=True) m.write(os, format="gams", io_options=io_options) # no error if we're here, but check for some identifying string self.assertIn("x + y", os.getvalue())
def test_gams_expanded_arcs(self): m = ConcreteModel() m.x = Var() m.y = Var() m.CON1 = Port() m.CON1.add(m.x, 'v') m.CON2 = Port() m.CON2.add(m.y, 'v') m.c = Arc(source=m.CON1, destination=m.CON2) TransformationFactory("network.expand_arcs").apply_to(m) m.o = Objective(expr=m.x) outs = StringIO() io_options = dict(symbolic_solver_labels=True) m.write(outs, format="gams", io_options=io_options) # no error if we're here, but check for some identifying string self.assertIn("x - y", outs.getvalue())
# ___________________________________________________________________________ # # Pyomo: Python Optimization Modeling Objects # Copyright (c) 2008-2022 # National Technology and Engineering Solutions of Sandia, LLC # Under the terms of Contract DE-NA0003525 with National Technology and # Engineering Solutions of Sandia, LLC, the U.S. Government retains certain # rights in this software. # This software is distributed under the 3-clause BSD License. # ___________________________________________________________________________ # # Author: Gabe Hackebeil # Purpose: For regression testing to ensure that the Pyomo # NL writer properly reports the values corresponding # to the nl file header line with the label # '# nonlinear vars in constraints, objectives, both' # from pyomo.environ import ConcreteModel, Var, Objective, Constraint model = ConcreteModel() model.x = Var(initialize=1.0) model.y = Var(initialize=1.0) model.OBJ = Objective(expr=model.y**2) model.CON1 = Constraint(expr=model.y * model.x == 4)
# The ASL differentiation routines seem to have a # bug that causes the lagrangian hessian to become # dense unless this constant term in moved to the # numerator. # # This test model relies on the gjh_asl_json executable. It # will not solve if sent to a real optimizer. # from pyomo.environ import ConcreteModel, Var, Objective, Constraint model = ConcreteModel() model.x = Var(bounds=(-1.0, 1.0), initialize=1.0) model.y = Var(bounds=(-1.0, 1.0), initialize=2.0) model.v = Var(bounds=(-1.0, 1.0), initialize=3.0) model.p = Var(initialize=2.0) model.p.fixed = True model.OBJ = Objective(expr=model.x) model.CON1 = Constraint( rule=lambda model: (2.0, 1.0 / model.p * model.v * (model.x - model.y))) model.CON2 = Constraint(expr=model.v * 1.0 / model.p * (model.x - model.y) == 2.0) model.CON3 = Constraint(expr=model.v * (model.x - model.y) / model.p == 2.0) model.CON4 = Constraint(expr=model.v * (model.x / model.p - model.y / model.p) == 2.0) model.CON5 = Constraint(expr=model.v * (model.x - model.y) * (1.0 / model.p) == 2.0) model.CON6 = Constraint(expr=model.v * (model.x - model.y) - 2.0 * model.p == 0)
# ___________________________________________________________________________ # # Pyomo: Python Optimization Modeling Objects # Copyright (c) 2008-2022 # National Technology and Engineering Solutions of Sandia, LLC # Under the terms of Contract DE-NA0003525 with National Technology and # Engineering Solutions of Sandia, LLC, the U.S. Government retains certain # rights in this software. # This software is distributed under the 3-clause BSD License. # ___________________________________________________________________________ # # Author: Gabe Hackebeil # Purpose: For regression testing to ensure that the Pyomo # NL writer properly reports the values corresponding # to the nl file header line with the label # '# nonlinear vars in constraints, objectives, both' # from pyomo.environ import ConcreteModel, Var, Objective, Constraint model = ConcreteModel() model.x = Var(initialize=1.0) model.y = Var(initialize=1.0) model.OBJ = Objective(expr=model.x) model.CON1 = Constraint(expr=model.y**2 == 4)
# dense unless this constant term in moved to the # numerator. # # This test model relies on the gjh_asl_json executable. It # will not solve if sent to a real optimizer. # from pyomo.environ import ConcreteModel, Var, Param, Objective, Constraint model = ConcreteModel() model.x = Var(bounds=(-1.0,1.0),initialize=1.0) model.y = Var(bounds=(-1.0,1.0),initialize=2.0) model.v = Var(bounds=(-1.0,1.0),initialize=3.0) model.p = Param(initialize=2.0) model.q = Param(initialize=2.0,mutable=True) model.OBJ = Objective(expr=model.x**2/model.p + model.x**2/model.q) model.CON1 = Constraint(expr=1.0/model.p*model.v*(model.x-model.y) == 2.0) model.CON2 = Constraint(expr=model.v*1.0/model.p*(model.x-model.y) == 2.0) model.CON3 = Constraint(expr=model.v*(model.x-model.y)/model.p == 2.0) model.CON4 = Constraint(expr=model.v*(model.x/model.p-model.y/model.p) == 2.0) model.CON5 = Constraint(expr=model.v*(model.x-model.y)*(1.0/model.p) == 2.0) model.CON6 = Constraint(expr=model.v*(model.x-model.y) == 2.0*model.p) model.CON7 = Constraint(expr=1.0/model.q*model.v*(model.x-model.y) == 2.0) model.CON8 = Constraint(expr=model.v*1.0/model.q*(model.x-model.y) == 2.0) model.CON9 = Constraint(expr=model.v*(model.x-model.y)/model.q == 2.0) model.CON10 = Constraint(expr=model.v*(model.x/model.q-model.y/model.q) == 2.0) model.CON11 = Constraint(expr=model.v*(model.x-model.y)*(1.0/model.q) == 2.0) model.CON12 = Constraint(expr=model.v*(model.x-model.y) == 2.0*model.q)