示例#1
0
    def test_param_from_pandas(self):
        # Test issue #68
        model = ConcreteModel()
        model.I = Set(initialize=range(6))

        model.P0 = Param(model.I,
                         initialize={
                             0: 400.0,
                             1: 0.0,
                             2: 0.0,
                             3: 0.0,
                             4: 0.0,
                             5: 240.0
                         })
        model.P1 = Param(model.I,
                         initialize=pd.Series({
                             0: 400.0,
                             1: 0.0,
                             2: 0.0,
                             3: 0.0,
                             4: 0.0,
                             5: 240.0
                         }).to_dict())
        model.P2 = Param(model.I,
                         initialize=pd.Series({
                             0: 400.0,
                             1: 0.0,
                             2: 0.0,
                             3: 0.0,
                             4: 0.0,
                             5: 240.0
                         }))

        #model.pprint()
        self.assertEqual(list(model.P0.values()), list(model.P1.values()))
        self.assertEqual(list(model.P0.values()), list(model.P2.values()))

        model.V = Var(model.I, initialize=0)

        def rule(m, l):
            return -m.P0[l] <= m.V[l]

        model.Constraint0 = Constraint(model.I, rule=rule)

        def rule(m, l):
            return -m.P1[l] <= m.V[l]

        model.Constraint1 = Constraint(model.I, rule=rule)

        def rule(m, l):
            return -m.P2[l] <= m.V[l]

        model.Constraint2 = Constraint(model.I, rule=rule)
示例#2
0
    def __init__(self, data, weights=None, nvar=None, objective=True):
        if nvar is None:
            nvar = len(data)
        if weights is None:
            weights = np.ones(len(data)) / nvar
        if len(data) != len(weights):
            print("Data and weights don't match in length")
            return
        model = ConcreteModel()

        # Number of original variables
        model.nvar = Param(within=NonNegativeIntegers, initialize=nvar)
        # Number of lines in data
        model.n = Param(within=NonNegativeIntegers,
                        initialize=np.shape(data)[0])
        # Number of columns in data
        model.m = Param(within=NonNegativeIntegers,
                        initialize=np.shape(data)[1])

        model.I = RangeSet(0, model.n - 1)
        model.J = RangeSet(0, model.m - 1)

        # Initialize all x_ij = 0.0, when j != 0, and all x_i0 = 1.0
        model.x = Var(model.I, model.J, domain=Binary, initialize=0)
        for i in model.I:
            model.x[i, 0].value = 1.0

        # Initialize c_ij from given data
        def c_init(model, i, j):
            return data[i, j]

        model.c = Param(model.I, model.J, initialize=c_init)

        # Initialize w_i from given parameter)
        def w_init(model, i):
            return weights[i]

        model.w = Param(model.I, initialize=w_init)

        if objective:
            model.OBJ = Objective(rule=self.obj_fun, sense=maximize)

        def const(model, i):
            ''' Constraint: Given line i has only one 1
            \sum_{i=1}^{n}x_{ij} = 1'''
            return sum(model.x[i, j] for j in model.J) == 1

        model.Constraint1 = Constraint(model.I, rule=const)

        self.model = model
        self._modelled = True
示例#3
0
    def __init__(self, data):
        self._solved = False
        self.res = None
        model = ConcreteModel()
        # Number of lines in data
        model.n = Param(within=NonNegativeIntegers, initialize=len(data))
        # Number of columns in data
        model.m = Param(within=NonNegativeIntegers, initialize=len(list(data)))

        model.I = RangeSet(0, model.n - 1)
        model.J = RangeSet(0, model.m - 1)

        # Initialize all x_ij = 0.0, when j != 0, and all x_i0 = 1.0
        model.x = Var(model.I, model.J, domain=Binary, initialize=0.0)
        for i in model.I:
            model.x[i, 0].value = 1.0

        # Initialize c_ij from given data
        def c_init(model, i, j):
            return data.values[i, j]

        model.c = Param(model.I, model.J, initialize=c_init)
        '''Objective function: Formulate problem as binary problem.
        \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij}*x_{ij}'''

        def obj_fun(model):
            return sum(
                sum(model.x[i, j] * model.c[i, j] for i in model.I)
                for j in model.J)

        model.OBJ = Objective(rule=obj_fun, sense=maximize)
        ''' Constraint: Given line i has only one 1
        \sum_{i=1}^{n}x_{ij} = 1'''

        def const(model, i):
            return sum(model.x[i, j] for j in model.J) == 1

        model.Constraint1 = Constraint(model.I, rule=const)

        self.model = model
        self._modelled = True
示例#4
0
model.OBJ = Objective(expr=obj_expression(model))


def _e(model):
    return np.dot(values, list(model.ct))


model.e = Expression([0], rule=_e)


def constr(model):
    return model.e == 88


model.Constraint1 = Constraint(expr=constr(model))


def ObjRule(model):
    return 2 * model.x[1] + 3 * model.x[2]


model.g = Objective(rule=ObjRule)

prob = model.create()
optim = SolverFactory('glpk')
result = optim.solve(prob, tee=True)
prob.load(result)

# all variables
prob.display()