示例#1
0
def test_Ensemble_data():
    """tests to check data from an ensemble"""
    # Test that the ensemble of two identical models
    # behalves like twice a single model.
    # Only for the independent (ie. diagonal) case
    # Note: this test would fail if a fixed contact_matrix
    # is passed which happens to be the identity matrix
    # The difference is that when specified as independent
    # each model is booted independently
    # If a contact matrix is specified, then the boot goal
    # is the combined total of all models. So there will be a different starting point.
    test_a = Model.open_file(path_model_2)
    test_a.name = 'test_a'
    test_b = Model.open_file(path_model_2)
    test_b.name = 'test_b'
    test_b.parameters['alpha_0'].set_value(0.7)

    reference = Model.open_file(path_model_2)
    reference.name = 'reference'

    off_diag = Parameter('off_diagonal',
                         0.1,
                         parameter_min=0.,
                         parameter_max=1.,
                         description='off diagonal element of contact matrix')
    off_diags = [off_diag]

    test_ensemble = Ensemble('test_ensemble', reference)
    test_ensemble.upload_models([test_a, test_b])
    test_ensemble.define_cross_transmission('infection cycle',
                                            'infected',
                                            'susceptible',
                                            'total',
                                            'contagious',
                                            'alpha',
                                            contact_type='simple',
                                            contact=off_diags)

    n_days = 100
    norm_day = 50
    test_ensemble.reset()
    test_ensemble.evolve_expectations(norm_day)
    for key in test_ensemble.populations:
        pop = test_ensemble.populations[key]
        nu = pop.history[norm_day]
        pop.history[norm_day] = int(round(nu))
        pop.scale_future(1., expectations=False)
    for model_name in test_ensemble.models:
        model = test_ensemble.models[model_name]
        for pop_name in model.populations:
            pop = model.populations[pop_name]
            nu = pop.history[norm_day]
            pop.history[norm_day] = int(round(nu))
            pop.scale_future(1., expectations=False)

    test_ensemble.generate_data(n_days, norm_day)
    for pop_name in test_ensemble.populations:
        pop = test_ensemble.populations[pop_name]
        if pop.show_sim:
            ens_hist = test_ensemble.populations[pop_name].history
示例#2
0
def test_point_estimate_local_death():
    start_day = 80
    end_day = 100
    ref_2 = Model.open_file(
        '/Users/karlen/pypm-local/models/covid19/USA/ny_4_2_0109.pypm')
    sim_2 = Model.open_file(
        '/Users/karlen/pypm-local/models/covid19/USA/ny_4_2_0109.pypm')

    # do fit of recover_frac
    for par_name in ref_2.parameters:
        par = ref_2.parameters[par_name]
        par.set_fixed()
    for par_name in ['recover_frac']:
        par = ref_2.parameters[par_name]
        par.set_variable(None, None)

    sim_2.reset()
    sim_2.generate_data(end_day)
    optimizer = Optimizer(ref_2,
                          'total deaths',
                          sim_2.populations['deaths'].history,
                          [start_day, end_day],
                          cumul_reset=True)
    optimizer.reset_variables()

    popt, pcov = optimizer.fit()

    iii = 1
示例#3
0
def test_point_estimates_repeated():
    start_day = 12
    end_day = 60
    ref_2 = Model.open_file(path_model_2_2)
    sim_2 = Model.open_file(path_model_2_2)

    # do fit of alpha_0, alpha_1, cont_0
    par_names = ['alpha_0', 'alpha_1', 'cont_0']
    sums = {}
    sum2s = {}
    for par_name in par_names:
        par = ref_2.parameters[par_name]
        par.set_variable(None, None)
        sums[par_name] = 0.
        sum2s[par_name] = 0.

    n_rep = 10
    fit_stat_list = []
    for i in range(n_rep):
        sim_2.reset()
        sim_2.generate_data(end_day)
        optimizer = Optimizer(ref_2, 'total reported',
                              sim_2.populations['reported'].history,
                              [start_day, end_day])
        optimizer.reset_variables()
        popt, pcov = optimizer.fit()
        fit_stat_list.append(optimizer.fit_statistics)
        for par_name in par_names:
            value = ref_2.parameters[par_name].get_value()
            sums[par_name] += value
            sum2s[par_name] += value**2

    ass_std = {}
    ass_std['alpha_0'] = 0.03
    ass_std['alpha_1'] = 0.01
    ass_std['cont_0'] = 10.

    means = {}
    std = {}
    for par_name in par_names:
        means[par_name] = sums[par_name] / n_rep
        std[par_name] = np.sqrt(sum2s[par_name] / n_rep - means[par_name]**2)
        assert std[par_name] < ass_std[par_name]
        truth = ref_2.parameters[par_name].initial_value
        assert np.abs((means[par_name] - truth) / std[par_name] /
                      np.sqrt(1. * n_rep)) < 3.

    ndof = fit_stat_list[0]['ndof']
    chi2_list = [fit_stat_list[i]['chi2'] for i in range(n_rep)]
    chi2_mean = np.mean(chi2_list)
    assert np.abs(chi2_mean - ndof) < 8.
    acor_list = [fit_stat_list[i]['acor'] for i in range(n_rep)]
    acor_mean = np.mean(acor_list)
    assert np.abs(acor_mean) < 0.2
示例#4
0
def test_Ensemble_properties_different():
    """tests to ensure the properties of Ensemble with different sub models"""
    # Test that the ensemble of two identical models
    # behalves like twice a single model.
    # Only for the independent (ie. diagonal) case
    # Note: this test would fail if a fixed contact_matrix
    # is passed which happens to be the identity matrix
    # The difference is that when specified as independent
    # each model is booted independently
    # If a contact matrix is specified, then the boot goal
    # is the combined total of all models. So there will be a different starting point.
    test_a = Model.open_file(path_model_2)
    test_a.name = 'test_a'
    test_b = Model.open_file(path_model_2)
    test_b.name = 'test_b'
    test_b.parameters['alpha_0'].set_value(0.7)
    test_c = Model.open_file(path_model_2)
    test_c.name = 'test_c'
    test_d = Model.open_file(path_model_2)
    test_d.name = 'test_d'
    test_d.parameters['alpha_0'].set_value(0.7)
    reference = Model.open_file(path_model_2)
    reference.name = 'reference'

    test_ensemble = Ensemble('test_ensemble', reference)
    test_ensemble.upload_models([test_a, test_b])
    test_ensemble.define_cross_transmission('infection cycle',
                                            'infected',
                                            'susceptible',
                                            'total',
                                            'contagious',
                                            'alpha',
                                            contact_type='diagonal')

    n_days = 100
    test_c.reset()
    test_c.evolve_expectations(n_days)
    test_d.reset()
    test_d.evolve_expectations(n_days)
    test_ensemble.reset()
    test_ensemble.evolve_expectations(n_days)
    for pop_name in test_ensemble.populations:
        pop = test_ensemble.populations[pop_name]
        if pop.show_sim:
            ens_hist = test_ensemble.populations[pop_name].history
            tc_hist = test_c.populations[pop_name].history
            td_hist = test_d.populations[pop_name].history
            for i in range(len(ens_hist)):
                ratio = ens_hist[i] / (tc_hist[i] + td_hist[i])
                assert np.abs(ratio - 1.) < 0.01
示例#5
0
def test_Ensemble_properties_identical():
    """tests to ensure the properties of Ensemble"""
    # Test that the ensemble of two identical models
    # behalves like twice a single model.
    # independent of the contact matrix
    test_a = Model.open_file(path_model_2)
    test_a.name = 'test_a'
    test_b = Model.open_file(path_model_2)
    test_b.name = 'test_b'
    reference = Model.open_file(path_model_2)
    reference.name = 'reference'
    single = Model.open_file(path_model_2)
    single.name = 'single'

    test_ensemble = Ensemble('test_ensemble', reference)
    test_ensemble.upload_models([test_a, test_b])

    contacts = [
        [[1., 0.0], [0.0, 1.]],
        [[1., 1.0], [1.0, 1.]],
        [[1., 0.5], [0.7, 1.]],
    ]

    for contact in contacts:
        test_ensemble.define_cross_transmission('infection cycle',
                                                'infected',
                                                'susceptible',
                                                'total',
                                                'contagious',
                                                'alpha',
                                                contact_type='fixed',
                                                contact=contact)

        n_days = 100
        test_ensemble.reset()
        test_ensemble.evolve_expectations(n_days)

        single.reset()
        single.evolve_expectations(n_days)

        for pop_name in test_ensemble.populations:
            pop = test_ensemble.populations[pop_name]
            if pop.show_sim:
                ens_hist = test_ensemble.populations[pop_name].history
                single_hist = single.populations[pop_name].history
                for i in range(len(ens_hist)):
                    ratio = ens_hist[i] / single_hist[i]
                    assert np.abs(ratio - 2.) < 0.001
示例#6
0
def test_model_2_9():
    ref_2_9 = Model.open_file(path_model_2_9)
    ref_2_9.parameters['alpha_0'].set_value(0.35)

    ref_2_9.transitions['outbreak_v'].enabled = True
    ref_2_9.parameters['outbreak_v_time'].set_value(30)
    ref_2_9.parameters['outbreak_v_number'].set_value(2.)
    ref_2_9.parameters['alpha_0_v'].set_value(0.35)

    ref_2_9.transitions['outbreak_w'].enabled = True
    ref_2_9.parameters['outbreak_w_time'].set_value(60)
    ref_2_9.parameters['outbreak_w_number'].set_value(4.)
    ref_2_9.parameters['alpha_0_w'].set_value(0.45)

    ref_2_9.transitions['vaccination_1'].enabled = True
    ref_2_9.parameters['vacc_time_1'].set_value(80)
    ref_2_9.parameters['vacc_number_1'].set_value(1000.)

    #    ref_2_9.reset()
    #    ref_2_9.evolve_expectations(200)

    ref_2_9.reset()
    ref_2_9.generate_data(200)

    i = 1
示例#7
0
def test_interval_maker():

    hub_date = datetime.date(2020, 4, 1)
    my_IntervalMaker = IntervalMaker("USA", hub_date)
    categories = ['case', 'death', 'hospitalization']
    n_period_dict = {'case': 5, 'death': 5, 'hospitalization': 30}
    n_rep = 10
    scale_std_alpha = 2.
    model = Model.open_file(path_model_2_6)
    if 'interval_maker' not in model.user_dict:
        model.user_dict['interval_maker'] = {}
        model.user_dict['interval_maker']['smearing parameters'] = [
            'non_icu_hosp_frac', 'recover_frac'
        ]
    model.parameters['non_icu_hosp_frac'].std_estimator = 0.002
    model.parameters['recover_frac'].set_value(0.99)
    model.parameters['recover_frac'].std_estimator = 0.01

    my_IntervalMaker.get_quantiles(categories,
                                   n_period_dict,
                                   model,
                                   n_rep=n_rep,
                                   scale_std_alpha=scale_std_alpha,
                                   back_up=21,
                                   fall_back=True,
                                   rescale=True)
    for category in categories:
        my_IntervalMaker.append_user_dict(category, model)
    i = 1
示例#8
0
def test_point_estimate_daily():
    def delta(cumul):
        diff = []
        for i in range(1, len(cumul)):
            diff.append(cumul[i] - cumul[i - 1])
        # first daily value is repeated since val(t0-1) is unknown
        diff.insert(0, diff[0])
        return diff

    start_day = 12
    end_day = 60
    ref_2 = Model.open_file(path_model_2_2)
    sim_2 = Model.open_file(path_model_2_2)

    # do fit of alpha_0, alpha_1, cont_0, trans_rate_1_time
    for par_name in ['alpha_0', 'alpha_1', 'cont_0']:
        par = ref_2.parameters[par_name]
        par.set_variable(None, None)

    par = ref_2.parameters['trans_rate_1_time']
    par.set_variable(None, None)
    par.set_min(13)
    par.set_max(19)

    sim_2.reset()
    sim_2.generate_data(end_day)
    daily_data = delta(sim_2.populations['reported'].history)
    daily_data[47] = np.inf
    optimizer = Optimizer(ref_2,
                          'daily reported',
                          daily_data, [start_day, end_day],
                          skip_data='42,45:48')
    optimizer.reset_variables()

    scan_dict = optimizer.i_fit()
    assert ref_2.parameters['trans_rate_1_time'].get_value() in [15, 16, 17]

    par = ref_2.parameters['trans_rate_1_time']
    par.set_fixed()

    popt, pcov = optimizer.fit()
    assert np.abs(ref_2.parameters['alpha_0'].get_value() -
                  ref_2.parameters['alpha_0'].initial_value) < 0.06
    assert np.abs(ref_2.parameters['alpha_1'].get_value() -
                  ref_2.parameters['alpha_1'].initial_value) < 0.02
    assert np.abs(ref_2.parameters['cont_0'].get_value() -
                  ref_2.parameters['cont_0'].initial_value) < 20.
示例#9
0
def test_Model_properties():
    """tests to ensure the properties of Model"""
    ref_model_1 = Model.open_file(path_model_4_1)
    ref_model_2 = Model.open_file(path_model_4_1)

    for test_model in [ref_model_1, ref_model_2]:
        # check simple scaling of initial contagious population
        # Will not be exact due to bootstrap
        EPS = 0.01
        cont_0 = test_model.parameters['cont_0'].get_value()
        test_model.reset()
        test_model.evolve_expectations(200)
        n_reported1 = test_model.populations['reported'].history[-1]
        assert test_model.populations['contagious_o'].history[-1] < 10.

        test_model.parameters['cont_0'].set_value(2 * cont_0)
        test_model.reset()
        test_model.evolve_expectations(200)
        n_reported2 = test_model.populations['reported'].history[-1]
        assert np.abs(n_reported2 - n_reported1 * 2) < EPS * n_reported1 * 2

    # check that the mean of many data runs is near expectation

    ref_model = Model.open_file(path_model_2)
    ref_model.reset()
    n_days = 60
    ref_model.evolve_expectations(n_days)
    sim_models = []
    n_rep = 100
    for i in range(n_rep):
        sim_model = copy.deepcopy(ref_model)
        sim_model.reset()
        sim_model.generate_data(n_days)
        sim_models.append(sim_model)
    for pop_name in ref_model.populations:
        pop = ref_model.populations[pop_name]
        if pop.show_sim:
            results = []
            for sim_model in sim_models:
                results.append(sim_model.populations[pop_name].history[-1])
            mean = np.mean(np.array(results))
            std = np.std(np.array(results))
            error = std / np.sqrt(1. * n_rep)
            expect = ref_model.populations[pop_name].history[-1]
            assert np.abs(expect - mean) < 8. * error
示例#10
0
def test_max_mult():
    ref_2_5 = Model.open_file(path_model_2_5)
    ref_2_5.transitions['vaccination'].enabled = True
    ref_2_5.parameters['vaccination_number'].set_value(800000.)
    ref_2_5.parameters['vaccination_time'].set_value(5)
    ref_2_5.reset()
    ref_2_5.boot(expectations=True)
    ref_2_5.evolve_expectations(200)
    i = 1
示例#11
0
def test_trajectory():
    ref_2 = Model.open_file(path_model_2_2)
    trajectory = Trajectory(ref_2, 'contagious', 'trans_rate_1', [0.03, 0.75])
    alpha_c = trajectory.get_alpha(0.)
    delta_1 = trajectory.get_delta(0.1)
    delta_2 = trajectory.get_delta(0.2)
    assert np.abs(alpha_c - 0.152) < 0.001
    assert np.abs(trajectory.get_delta(alpha_c)) < 0.00001
    assert np.abs(delta_1 + 0.0513) < 0.0001
    assert np.abs(delta_2 - 0.0389) < 0.0001
示例#12
0
def test_model_2_5():
    ref_2_5 = Model.open_file(path_model_2_5)
    ref_2_3 = Model.open_file(path_model_2_3)
    #ref_2_5.transitions['vaccination'].enabled = True
    #ref_2_5.parameters['vaccination_number'].set_value(10000.)
    ref_2_5.reset()
    ref_2_5.evolve_expectations(200)
    ref_2_3.reset()
    ref_2_3.evolve_expectations(200)

    for pop_name in ref_2_3.populations:
        pop = ref_2_3.populations[pop_name]
        if pop.show_sim:
            print(pop_name)
            hist_2_3 = ref_2_3.populations[pop_name].history
            hist_2_5 = ref_2_5.populations[pop_name].history
            for i in range(len(hist_2_3)):
                if hist_2_3[i] > 0:
                    ratio = hist_2_5[i] / hist_2_3[i]
                    assert np.abs(ratio - 1.) < 0.001
示例#13
0
def test_point_estimate_skip_zeros():
    start_day = 12
    end_day = 60
    ref_2 = Model.open_file(path_model_2_2)
    sim_2 = Model.open_file(path_model_2_2)

    # do fit of alpha_1, trans_rate_1_time
    for par_name in ['alpha_1']:
        par = ref_2.parameters[par_name]
        par.set_variable(None, None)

    par = ref_2.parameters['trans_rate_1_time']
    par.set_variable(None, None)
    par.set_min(13)
    par.set_max(19)

    sim_2.reset()
    rn_dict = sim_2.populations['reported'].get_report_noise()
    rn_dict['report_days'].set_value(7)
    sim_2.generate_data(end_day)
    sim_2.populations['reported'].history[47] = np.inf
    optimizer = Optimizer(ref_2,
                          'total reported',
                          sim_2.populations['reported'].history,
                          [start_day, end_day],
                          cumul_reset=True,
                          skip_data='42,45:48',
                          skip_zeros=True)
    #optimizer = Optimizer(ref_2, 'total reported', sim_2.populations['reported'].history, [start_day, end_day],
    #                      cumul_reset=True, skip_zeros=False)
    optimizer.reset_variables()

    scan_dict = optimizer.i_fit()
    assert ref_2.parameters['trans_rate_1_time'].get_value() in [15, 16, 17]

    par = ref_2.parameters['trans_rate_1_time']
    par.set_fixed()

    popt, pcov = optimizer.fit()
    assert np.abs(ref_2.parameters['alpha_1'].get_value() -
                  ref_2.parameters['alpha_1'].initial_value) < 0.02
示例#14
0
def test_model_2_8():
    ref_2_8 = Model.open_file(path_model_2_8)
    ref_2_8.transitions['outbreak_v'].enabled = True
    ref_2_8.parameters['outbreak_v_time'].set_value(30)
    ref_2_8.parameters['outbreak_v_number'].set_value(2.)
    ref_2_8.parameters['alpha_0'].set_value(0.35)
    #    ref_2_8.reset()
    #    ref_2_8.evolve_expectations(200)
    ref_2_8.reset()
    ref_2_8.generate_data(200)

    i = 1
示例#15
0
def test_model_2_7():
    ref_2_7 = Model.open_file(path_model_2_7)
    ref_2_7.transitions['vaccination_1'].enabled = True
    ref_2_7.transitions['vaccination_2'].enabled = True
    ref_2_7.parameters['vacc_time_2'].set_value(80)
    ref_2_7.parameters['vacc_number_2'].set_value(-5.)
    #    ref_2_7.reset()
    #    ref_2_7.evolve_expectations(200)
    ref_2_7.reset()
    ref_2_7.generate_data(200)

    i = 1
示例#16
0
def test_model_ks_4_2():
    ks_4_2 = Model.open_file('ks_4_2_0116_problem.pypm')
    ks_4_2.reset()
    ks_4_2.evolve_expectations(720)
    recent_oe_ve = [[ks_4_2.populations['os_susceptible'].history[i], ks_4_2.populations['ve_susceptible'].history[i]] \
                    for i in range(695,700)]
    ks_4_2.reset()
    ks_4_2.parameters['ve_frac'].set_value(0.801)
    ks_4_2.evolve_expectations(720)
    recent_oe_ve2 = [[ks_4_2.populations['os_susceptible'].history[i], ks_4_2.populations['ve_susceptible'].history[i]] \
                    for i in range(695,700)]
    i = 1
示例#17
0
文件: Ensemble.py 项目: pypm/pypmca
    def upload_model_files(self, model_filenames: list):
        if not isinstance(model_filenames, list):
            raise TypeError(
                'Error in upload_model_files: argument must be a list of .pypm filenames'
            )
        for model_file in model_filenames:
            if not isinstance(model_file, str):
                raise TypeError(
                    'Error in upload_model_files: argument must be a list of .pypm filenames'
                )

        for model_filename in model_filenames:
            self.__add_model(Model.open_file(model_filename))
示例#18
0
def test_Model_copy_values_from():
    ref_model_2 = Model.open_file(path_model_2)
    alberta_model_2 = Model.open_file('ab_2_0514.pypm')

    ref_model_2.copy_values_from(alberta_model_2)

    ref_model_2.reset()
    ref_model_2.evolve_expectations(80)
    alberta_model_2.reset()
    alberta_model_2.evolve_expectations(80)

    for pop_name in ref_model_2.populations:
        pop = ref_model_2.populations[pop_name]
        # Bug fixed in ref_model_2, not in alberta_model_2 accounts for small differences in icu
        if 'vent' not in pop.name and 'in_' not in pop.name:
            ref_hist = pop.history
            alberta_hist = alberta_model_2.populations[pop_name].history
            for i in range(len(ref_hist)):
                if np.abs(ref_hist[i] - alberta_hist[i]) > 0.0001:
                    print(pop.name, i, ref_hist[i], alberta_hist[i],
                          np.abs(ref_hist[i] - alberta_hist[i]))
                assert np.abs(ref_hist[i] - alberta_hist[i]) < 0.001
示例#19
0
def test_class_Population():
    """tests to ensure the behaviour class Population"""
    init_value = 100
    test_pop = Population('test population', init_value, description='For testing populations',
                          hidden=True, color='black', show_sim=False, report_noise=False,
                          report_noise_par=None)
    assert test_pop.history[0] == init_value

    model = Model.open_file(path_model_2_8)
    test_pop.set_model(model)

    incoming = 10
    test_pop.update_future_fast(incoming)
    assert test_pop.future[0] == incoming

    test_pop.do_time_step()
    assert test_pop.history[1] == init_value + incoming
    assert len(test_pop.future) == 0 or test_pop.future == 0

    scale_factor = 0.5
    test_pop.scale_history(scale_factor)
    assert test_pop.history[0] == init_value * scale_factor
    assert test_pop.history[1] == (init_value + incoming) * scale_factor

    # check that noise in reporting makes sense
    # Expectations are not effected - data should be
    # but the total reported should be the same after all reporting complete
    noise_factor = Parameter('noise_factor', 0.3)
    backlog_factor = Parameter('backlog_factor', 0.8)
    # restart - back to initial value
    for expectations in [True, False]:
        test_pop.reset()
        future = [0, 10, 100, 100, 100, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        future_sum = np.sum(np.array(future))
        test_pop.set_report_noise(True, noise_factor, backlog_factor, None)
        test_pop.future = future
        for i in range(len(future) + 5):
            test_pop.do_time_step(expectations=expectations)
        assert test_pop.history[-1] == init_value + future_sum

    report_days = Parameter('report_days', 127, parameter_min=-7, parameter_max=127, parameter_type='int')
    for report_day_value in [127, 63, -1, -2, -5, -7]:
        report_days.set_value(report_day_value)
        test_pop.reset()
        future = [0, 10, 100, 100, 100, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        future_sum = np.sum(np.array(future))
        test_pop.set_report_noise(True, noise_factor, backlog_factor, report_days)
        test_pop.future = future
        for i in range(len(future) + 5):
            test_pop.do_time_step(expectations=expectations)
        assert test_pop.history[-1] == init_value + future_sum
示例#20
0
def test_sim_gof_local():
    start_day = 12
    end_day = 60
    ref_2 = Model.open_file(path_model_2_2)
    sim_2 = Model.open_file(path_model_2_2)

    # do fit of alpha_0, alpha_1, cont_0
    par_names = ['alpha_1']
    for par_name in par_names:
        par = ref_2.parameters[par_name]
        par.set_variable(None, None)

    sim_2.reset()
    sim_2.generate_data(end_day)
    sim_2.populations['reported'].history[47] = np.inf
    optimizer = Optimizer(ref_2,
                          'total reported',
                          sim_2.populations['reported'].history,
                          [start_day, end_day],
                          cumul_reset=True,
                          skip_data='42,45:48')
    optimizer.reset_variables()
    popt, pcov = optimizer.fit()
    fit_statistics = optimizer.fit_statistics

    optimizer.calc_chi2s = False
    optimizer.calc_chi2f = True
    n_rep = 10
    optimizer.calc_sim_gof(n_rep)

    fit_stat_list = optimizer.fit_stat_list
    ndof = fit_stat_list[0]['ndof']
    chi2_list = [fit_stat_list[i]['chi2'] for i in range(n_rep)]
    chi2_mean = np.mean(chi2_list)
    assert np.abs(chi2_mean - ndof) < 8.E6
    acor_list = [fit_stat_list[i]['acor'] for i in range(n_rep)]
    acor_mean = np.mean(acor_list)
    assert np.abs(acor_mean) < 0.2
示例#21
0
def test_model_ny_4_2():
    ny_4_2 = Model.open_file(
        '/Users/karlen/pypm-local/models/covid19/USA/ny_4_2_0109.pypm')
    ny_4_2.reset()
    ny_4_2.evolve_expectations(40)
    num = ny_4_2.populations['reported'].history[-1]
    cont_0 = ny_4_2.parameters['cont_0'].get_value()
    ny_4_2.parameters['cont_0'].set_value(2. * cont_0)
    ny_4_2.reset()
    ny_4_2.evolve_expectations(40)
    num2 = ny_4_2.populations['reported'].history[-1]
    if (ny_4_2.populations['contagious_o'].initial_value !=
            ny_4_2.parameters['cont_0']):
        ny_4_2.populations['contagious_o'].initial_value = ny_4_2.parameters[
            'cont_0']
        print('changed')
    ny_4_2.reset()
    ny_4_2.evolve_expectations(40)
    num3 = ny_4_2.populations['reported'].history[-1]
    i = 1
示例#22
0
def test_linear_modifier():
    ref_2_4 = Model.open_file(path_model_2_4)
    trajectory = Trajectory(ref_2_4, 'contagious', 'trans_rate_1', [0.02, 2.0])
    alpha_c = trajectory.get_alpha(0.)
    ref_2_4.parameters['alpha_1'].set_value(alpha_c)
    ref_2_4.parameters['to_icu_delay_mean'].set_value(0.5)
    ref_2_4.parameters['to_icu_delay_sigma'].set_value(0.5)
    ref_2_4.transitions['mod_icu_frac'].enabled = True
    ref_2_4.parameters['icu_frac_time'].set_value(60)
    ref_2_4.parameters['icu_frac_0'].set_value(0.1)
    # the meaning of this parameter changed to the end_value
    # ref_2_4.parameters['icu_frac_slope'].set_value(0.01)
    ref_2_4.parameters['icu_frac_slope'].set_value(0.2)
    ref_2_4.parameters['icu_frac_nstep'].set_value(10)
    ref_2_4.reset()
    ref_2_4.evolve_expectations(100)
    pop_hist = ref_2_4.populations['icu admissions'].history
    assert np.abs(pop_hist[55] - pop_hist[54] - pop_hist[50] +
                  pop_hist[49]) < 0.01
    assert np.abs(pop_hist[75] - pop_hist[74] - pop_hist[70] +
                  pop_hist[69]) < 0.1
    assert np.abs((pop_hist[75] - pop_hist[74]) /
                  (pop_hist[55] - pop_hist[54]) - 2.) < 0.1
示例#23
0
def test_mixing_evolve_data():
    ref_2_9 = Model.open_file(path_model_2_9)
    ref_2_9.reset()
    ref_2_9.generate_data(100, from_step=0, data_start=50)
    reported = ref_2_9.populations['reported'].history
    i = 1
示例#24
0
def test_model_az_2_9():
    az_2_8 = Model.open_file('az_2_8_0530.pypm')
    az_2_9 = Model.open_file(path_model_2_9)

    az_2_9.copy_values_from(az_2_8)
    az_2_9.name = 'az_2_9_0530'

    #v_hesitant = 0.14
    #N0 = az_2_8.parameters['N_0'].get_value()
    #az_2_8.populations['vacc cand'].set_initial_value(int(N0 * (1. - v_hesitant)))
    #az_2_8.populations['sus vacc cand'].set_initial_value(int(N0 * (1. - v_hesitant)))

    #az_2_8.parameters['vacc_time_1'].set_value(290)
    #az_2_9.parameters['vacc_time_1'].set_value(290)

    az_2_8.reset()
    az_2_8.evolve_expectations(289)
    az_2_8.evolve_expectations(500 - 289, from_step=289)

    az_2_9.parameters['vac_waned_delay_mean'].set_value(10000.)
    az_2_9.parameters['nat_waned_delay_mean'].set_value(10000.)
    az_2_9.parameters['vac_waned_frac'].set_value(0.)

    #v_hesitant = 0.14
    #N0 = az_2_9.parameters['N_0'].get_value()
    #az_2_9.populations['vacc cand'].set_initial_value(int(N0 * (1. - v_hesitant)))
    #az_2_9.populations['sus vacc cand'].set_initial_value(int(N0 * (1. - v_hesitant)))

    az_2_9.reset()
    #az_2_9.evolve_expectations(500)
    az_2_9.evolve_expectations(289)
    az_2_9.evolve_expectations(500 - 289, from_step=289)

    reps = []
    rep_vs = []
    wanned = []

    pops = [
        'susceptible', 'immunized', 'usefully vaccinated', 'daily vaccinated',
        'vacc cand', 'sus vacc cand'
    ]
    compares = {}
    for pop in pops:
        compares[pop] = []

    for day in [288, 289, 290, 291, 292, 293, 500]:
        reps_m = []
        rep_vs_m = []

        for model in [az_2_8, az_2_9]:
            rep = model.populations['reported'].history[
                day] - model.populations['reported'].history[day - 1]
            reps_m.append(rep)
            rep_v = model.populations['reported_v'].history[
                day] - model.populations['reported_v'].history[day - 1]
            rep_vs_m.append(rep_v)

        for pop in pops:
            compares[pop].append([
                az_2_8.populations[pop].history[day],
                az_2_9.populations[pop].history[day]
            ])

        wanned.append(az_2_9.populations['waned_immunity'].history[day])
        reps.append(reps_m)
        rep_vs.append(rep_vs_m)

    i = 1
示例#25
0
    def get_csv(self, forecast_date, category,cor_scale=1.):
        t0 = datetime.date(2020, 3, 1)
        forecast_date_text = forecast_date.isoformat()
        day_of_week = forecast_date.weekday()
        days_after_t0 = (forecast_date - t0).days
        first_sunday = days_after_t0
        if day_of_week == 0:
            first_sunday -= 1
        elif day_of_week < 6:
            first_sunday += 6 - day_of_week

        #names = ['case', 'death']
        #dict_names = ['case', 'death']
        #periods = ['wk', 'wk']
        #inc_types_list = [['inc', 'cum'], ['inc', 'cum']]

        period = 'wk'
        inc_types = ['inc', 'cum']

        # collect information for all Germany
        de_inc_point_est_dict = {}
        de_inc_periods_dict = {}
        de_cum_point_est_dict = {}
        de_cum_periods_dict = {}
        de_inc_point_est_dict[category] = {}
        de_inc_periods_dict[category] = {}
        de_cum_point_est_dict[category] = {}
        de_cum_periods_dict[category] = {}
        state_sums = 0

        for state in self.regional_abbreviations:
            abbrev = self.regional_abbreviations[state]
            location = self.regional_locations[state]
            state_data = None
            if category == 'case':
                state_data = self.pd_dict['germany-rki-pypm.csv'][abbrev + '-pt'].fillna(0).values
            elif category == 'death':
                state_data = self.pd_dict['germany-rki-pypm.csv'][abbrev + '-dt'].fillna(0).values

            success = False
            model = None

            if category == 'case':
                for model_name in self.model_names:
                    try:
                        filename = abbrev + model_name + '.pypm'
                        path_model = self.model_dir / filename
                        model = Model.open_file(path_model)
                        success = True
                        break
                    except:
                        pass
            elif category == 'death':
                for model_name in self.model_names:
                    for model_suffix in ['_d','_h','']:
                        try:
                            filename = abbrev + model_name + model_suffix + '.pypm'
                            path_model = self.model_dir / filename
                            model = Model.open_file(path_model)
                            success = True
                            break
                        except:
                            pass

            if not success:
                raise RuntimeError('No model for: ', abbrev)

            print(model.name)

            hub_dict = model.user_dict['forecast_hub'][forecast_date][category]
            point_est_dict = hub_dict['point_estimates']
            quantile_dict = hub_dict['quantiles']
            inc_periods = hub_dict['inc_periods']
            cum_periods = [state_data[first_sunday-1]] * len(inc_periods[0])
            for inc_type in inc_types:
                # for cum record
                sum = state_data[first_sunday-1]
                if inc_type == 'cum':
                    state_sums += sum
                for i_period in point_est_dict:
                    index = int(i_period) - 1
                    target = i_period+' '+period+' ahead '+inc_type+' '+category
                    days = int(i_period)
                    if period == 'wk':
                        days *= 7
                    else:
                        days += 1
                    target_end_date = (t0 + timedelta(days=(first_sunday + days - 1))).isoformat()

                    # point estimates
                    value = point_est_dict[i_period]
                    if inc_type == 'cum':
                        sum += point_est_dict[i_period]
                        value = sum

                        if i_period in de_cum_point_est_dict[category]:
                            de_cum_point_est_dict[category][i_period] += sum
                        else:
                            de_cum_point_est_dict[category][i_period] = sum

                    self.add_record(forecast_date_text,target,target_end_date,location,'point','NA',value)

                    # quantiles
                    if inc_type == 'inc':
                        if i_period in de_inc_point_est_dict[category]:
                            de_inc_point_est_dict[category][i_period] += value
                        else:
                            de_inc_point_est_dict[category][i_period] = value

                        for quant in quantile_dict[i_period]:
                            value = quantile_dict[i_period][quant]
                            self.add_record(forecast_date_text, target, target_end_date, location, 'quantile', quant, value)

                        if i_period in de_inc_periods_dict[category]:
                            ip_len = len(inc_periods[index])
                            for i_rep in range(len(de_inc_periods_dict[category][i_period])):
                                # in case there are fewer repetitions, loop over others:
                                ip_index = i_rep % ip_len
                                de_inc_periods_dict[category][i_period][i_rep] += inc_periods[index][ip_index]
                        else:
                            de_inc_periods_dict[category][i_period] = copy.copy(inc_periods[index])
                    elif inc_type == 'cum':
                        for i_rep in range(len(inc_periods[index])):
                            cum_periods[i_rep] += inc_periods[index][i_rep]
                        for quant in quantile_dict[i_period]:
                            value = np.percentile(cum_periods, float(quant)*100.)
                            self.add_record(forecast_date_text, target, target_end_date, location, 'quantile', quant, value)

                        if i_period in de_cum_periods_dict[category]:
                            ip_len = len(cum_periods)
                            for i_rep in range(len(de_cum_periods_dict[category][i_period])):
                                # in case there are fewer repetitions, loop over others:
                                ip_index = i_rep % ip_len
                                de_cum_periods_dict[category][i_period][i_rep] += cum_periods[ip_index]
                        else:
                            de_cum_periods_dict[category][i_period] = [cum_periods[i_rep] for i_rep in range(len(cum_periods))]

        # return 'Germany' summary:
        # there is a separate file with Germany wide deaths. Need to correct by adding the additional deaths here
        #additional_deaths = de_deaths - state_deaths
        additional_counts = 0
        if category == 'death':
            print('Germany total deaths included:',state_sums)
        elif category == 'case':
            print('Germany total cases included:', state_sums)
        #print('Germany total: additional deaths included:', additional_deaths)

        location = self.regional_locations['Germany']
        quants = [0.01, 0.025] + [0.05 + 0.05 * i for i in range(19)] + [0.975, 0.99]
        #for i in range(2):
        for inc_type in inc_types:
            for i_period in de_inc_point_est_dict[category]:
                target = i_period + ' ' + period + ' ahead ' + inc_type + ' ' + category
                days = int(i_period)
                if period == 'wk':
                    days *= 7
                else:
                    days += 1
                target_end_date = (t0 + timedelta(days=(first_sunday + days - 1))).isoformat()

                # point estimates
                value = de_inc_point_est_dict[category][i_period]
                if inc_type == 'cum':
                    value = de_cum_point_est_dict[category][i_period] + additional_counts
                self.add_record(forecast_date_text, target, target_end_date, location, 'point', 'NA', value)

                # quantiles
                if inc_type == 'inc':
                    median = np.percentile(de_inc_periods_dict[category][i_period], 50.)
                    for quant in quants:
                        value = np.percentile(de_inc_periods_dict[category][i_period], float(quant)*100.)
                        # increase the width of the interval for the US as a whole, to account for correlations between states
                        scaled_value = max(0., cor_scale * (value - median) + median)
                        quant_text = '{0:0.3f}'.format(quant)
                        self.add_record(forecast_date_text, target, target_end_date, location, 'quantile', quant_text,
                                        scaled_value)

                elif inc_type == 'cum':
                    median = np.percentile(de_cum_periods_dict[category][i_period], 50.) + additional_counts
                    for quant in quants:
                        value = np.percentile(de_cum_periods_dict[category][i_period], float(quant) * 100.) + additional_counts
                        scaled_value = max(0., cor_scale * (value - median) + median)
                        quant_text = '{0:0.3f}'.format(quant)
                        self.add_record(forecast_date_text, target, target_end_date, location, 'quantile', quant_text,
                                        scaled_value)

        return self.buff
示例#26
0
文件: Ensemble.py 项目: pypm/pypmca
    def __init__(self, name: str, model):
        """Constructor
         - Model specifies the reference model: populations etc should match those in
         the ensemble of models. It can be specified as a model, or as a filename
        """
        super().__init__(name)

        self.model = None
        in_model = None
        if isinstance(model, Model):
            in_model = model
        elif isinstance(model, str):
            in_model = Model.open_file(model)
        else:
            raise TypeError(
                'Error creating ensemble. The model argument needs to be a model object '
                + 'or have a .pypm filename')

        # to avoid the possibility that the reference model is subsequently modified, make a copy
        # that will not be as exposed to tampering
        self.model = copy.deepcopy(in_model)

        # point to the population objects in self.model to save the histories
        # this allows for consistent access to history between models and ensembles
        for pop_name in self.model.populations:
            pop = self.model.populations[pop_name]
            self.populations[pop_name] = pop

        # the parameters will be set once the list of models are read in
        self.parameters = {}

        # the boot parameters point to the ones copied from the reference
        self.boot_pars = self.model.boot_pars

        # the important scaling parameter for the ensemble gets defined here
        # this is forced to be a parameter when each model is created and
        # checked when the models are included in the ensemble

        boot_pop = self.populations[self.boot_pars['boot_population']]
        boot_pop_ip = boot_pop.initial_value
        self.parameters[boot_pop_ip.name] = boot_pop_ip
        # When this scaling parameter is changed, all the model scaling parameters
        # must also be scaled accordingly.
        boot_pop_ip.set_must_update(self)

        # The list of models (either provided directly or as a list of .pypm files)
        # They are required to have unique names for user interaction
        # Ordering is preserved to match the transmission matrix
        self.model_list = []
        self.models = {}
        self.infected_name = None
        self.susceptible_name = None
        self.total_name = None
        self.contagious_name = None
        self.alpha_name = None
        self.infection_cycle_name = None
        self.contact = None
        self.contact_matrix = None
        self.contact_type = ''
        self.null_pop = Population('null', 0.)
        self.total_goal = None
        self.boot_achieved = {}
        self.max_scale_factor = None

        self.__distribution = None
        self.__nbinom_par = None
        self.set_distribution('poisson', None)
示例#27
0
def test_model_bc_4_1():
    bc_4_1 = Model.open_file('bc_4_1_1231x.pypm')
    bc_4_1.reset()
    bc_4_1.evolve_expectations(700)
    i = 1
示例#28
0
def test_Ensemble_properties_equality():
    """tests to ensure the properties of Ensemble"""
    # Test that the ensemble of two identical models, with different scales
    # and equality contact matrix behaves like the same ensemble
    # with independent contact matrix
    test_a1 = Model.open_file(path_model_2_3)
    test_a1.name = 'test_a1'
    test_b1 = Model.open_file(path_model_2_3)
    test_b1.name = 'test_b1'
    reference1 = Model.open_file(path_model_2_3)
    reference1.name = 'reference1'
    cont_0 = test_b1.parameters['cont_0'].get_value()
    test_b1.parameters['cont_0'].set_value(cont_0 * 2.)
    N_0 = test_b1.parameters['N_0'].get_value()
    test_b1.parameters['N_0'].set_value(N_0 * 2)

    test_ensemble1 = Ensemble('test_ensemble1', reference1)
    test_ensemble1.upload_models([test_a1, test_b1])

    test_ensemble1.define_cross_transmission('infection cycle',
                                             'infected',
                                             'susceptible',
                                             'total',
                                             'contagious',
                                             'alpha',
                                             contact_type='diagonal')

    test_a2 = Model.open_file(path_model_2_3)
    test_a2.name = 'test_a2'
    test_b2 = Model.open_file(path_model_2_3)
    test_b2.name = 'test_b2'
    reference2 = Model.open_file(path_model_2_3)
    reference2.name = 'reference2'
    cont_0 = test_b2.parameters['cont_0'].get_value()
    test_b2.parameters['cont_0'].set_value(cont_0 * 2.)
    N_0 = test_b2.parameters['N_0'].get_value()
    test_b2.parameters['N_0'].set_value(N_0 * 2)

    test_ensemble2 = Ensemble('test_ensemble2', reference2)
    test_ensemble2.upload_models([test_a2, test_b2])

    test_ensemble2.define_cross_transmission('infection cycle',
                                             'infected',
                                             'susceptible',
                                             'total',
                                             'contagious',
                                             'alpha',
                                             contact_type='equality')

    n_days = 100

    test_ensemble1.reset()
    test_ensemble1.evolve_expectations(n_days)

    test_ensemble2.reset()
    test_ensemble2.evolve_expectations(n_days)

    for pop_name in test_ensemble1.populations:
        pop1 = test_ensemble1.populations[pop_name]
        if pop1.show_sim:
            pop1h = test_ensemble1.populations[pop_name].history
            pop2h = test_ensemble2.populations[pop_name].history
            for i in range(len(pop1h)):
                if pop2h[i] > 0.:
                    ratio = pop1h[i] / pop2h[i]
                    assert np.abs(ratio - 1.) < 0.03
示例#29
0
 def test_Model_copy_values_from(self):
     path_model_2 = self.model_dir / 'ref_model_2.pypm'
     ref_model_2 = Model.open_file(path_model_2)
示例#30
0
def test_report_noise_days():
    for report_noise_weekly in [False, True]:
        start_day = 12
        end_day = 80
        ref_2 = Model.open_file(path_model_2_2)
        ref_2.parameters['report_noise'].set_value(0.1)
        # BC: no reporting on Sundays
        ref_2.parameters['report_days'].set_value(63)
        sim_2 = copy.deepcopy(ref_2)
        sim_2.populations['reported'].report_noise_weekly = report_noise_weekly

        # do fit of alpha_0, alpha_1, cont_0
        par_names = ['alpha_0', 'alpha_1', 'cont_0']
        sums = {}
        sum2s = {}
        for par_name in par_names:
            par = ref_2.parameters[par_name]
            par.set_variable(None, None)
            sums[par_name] = 0.
            sum2s[par_name] = 0.

        n_rep = 10
        fit_stat_list = []
        for i in range(n_rep):
            sim_2.reset()
            sim_2.generate_data(end_day)
            optimizer = Optimizer(ref_2, 'total reported',
                                  sim_2.populations['reported'].history,
                                  [start_day, end_day])
            optimizer.reset_variables()
            popt, pcov = optimizer.fit()
            fit_stat_list.append(optimizer.fit_statistics)
            for par_name in par_names:
                value = ref_2.parameters[par_name].get_value()
                sums[par_name] += value
                sum2s[par_name] += value**2

        ass_std = {}
        ass_std['alpha_0'] = 0.05
        ass_std['alpha_1'] = 0.01
        ass_std['cont_0'] = 10.

        means = {}
        std = {}
        for par_name in par_names:
            means[par_name] = sums[par_name] / n_rep
            std[par_name] = np.sqrt(sum2s[par_name] / n_rep -
                                    means[par_name]**2)
        for par_name in par_names:
            assert std[par_name] < ass_std[par_name]
            truth = ref_2.parameters[par_name].initial_value
            assert np.abs((means[par_name] - truth) / std[par_name] /
                          np.sqrt(1. * n_rep)) < 3.

        ndof = fit_stat_list[0]['ndof']
        chi2_list = [fit_stat_list[i]['chi2'] for i in range(n_rep)]
        chi2_mean = np.mean(chi2_list)
        assert chi2_mean / ndof > 2.5
        if not report_noise_weekly:
            acor_list = [fit_stat_list[i]['acor'] for i in range(n_rep)]
            acor_mean = np.mean(acor_list)
            assert acor_mean < -0.2