def test_class_Chain(): """tests to ensure the behaviour class Chain""" test_model = Model('test_model') from_pop = Population('from_pop', 0.) to_pop = Population('to_pop', 0.) pop_a = Population('pop_a', 0.) pop_b = Population('pop_b', 0.) start = 100000 from_pop.future = [start] mean = 10. sigma = 2. delay_pars = {'mean': Parameter('mean', mean, parameter_min=0.1, parameter_max=100.), 'sigma': Parameter('sigma', sigma, parameter_min=0.1, parameter_max=1000.)} delay = Delay('delay', 'norm', delay_pars, test_model) frac = 0.8 fraction = Parameter('frac', frac) chain = [] chain.append(Propagator('prop_0', from_pop, pop_a, fraction, delay)) chain.append(Propagator('prop_1', pop_a, pop_b, fraction, delay)) test_chain = Chain('test_chain', from_pop, to_pop, chain, fraction, delay, test_model) test_model.add_connector(test_chain) for time_step in [1., 1. / 4.]: test_model.set_time_step(time_step) for func in [test_chain.update_expectation, test_chain.update_data]: EPS = 0.02 if func == test_chain.update_data: EPS = 0.2 to_pop.reset() pop_a.reset() pop_b.reset() func() for pop in [to_pop, pop_b]: distribution = pop.future total = start * (1. - frac ** 2) * frac ave = mean std_dev = sigma if pop == pop_b: total = start * frac ** 2 ave = 2. * mean std_dev = np.sqrt(2.) * sigma sum_p = 0. sum_tp = 0. sum_ttp = 0. for i in range(len(distribution)): sum_p += distribution[i] sum_tp += i * distribution[i] * time_step sum_ttp += i * i * distribution[i] * time_step ** 2 assert np.abs(sum_p - total) < EPS * total est_mean = sum_tp / total assert np.abs(est_mean - ave) < EPS * ave est_sigma = np.sqrt(sum_ttp / total - est_mean ** 2) assert np.abs(est_sigma - std_dev) < EPS * std_dev
def test_class_Injector(): """tests to ensure the behaviour class Injector""" test_model = Model('test_model') number = 50. inject = Parameter('inject', number, parameter_min=0., parameter_max=1000.) time = 5 trans_time = Parameter('time', time, parameter_type='int', parameter_min=0, parameter_max=1000) to_pop = Population('to_pop', 0) test_injector = Injector('injector', 'rel_days', trans_time, to_pop, inject, model=test_model) test_model.add_transition(test_injector) for time_step in [1., 1. / 4.]: test_model.set_time_step(time_step) to_pop.reset() test_injector.take_action() assert to_pop.future[0] == number assert np.abs(test_injector.trigger_step - time / time_step) < 0.1
def test_class_Splitter(): """tests to ensure the behaviour class Splitter""" test_model = Model('test_model') start = 100000 from_pop = Population('from_pop', 0) from_pop.future = [start] to_pops = [Population('to_pop1', 0.), Population('to_pop2', 0.)] fracs = [0.4, 0.6] fraction = Parameter('frac', fracs[0]) mean = 10. std_dev = 4. delay_pars = { 'mean': Parameter('mean', mean, parameter_min=-100., parameter_max=100.), 'sigma': Parameter('sigma', std_dev, parameter_min=-100., parameter_max=100.) } test_delay = Delay('test_delay', 'norm', delay_parameters=delay_pars, model=test_model) test_split = Splitter('test_prop', from_pop, to_pops, [fraction], test_delay) test_model.add_connector(test_split) for time_step in [1., 1. / 4.]: test_model.set_time_step(time_step) for func in [test_split.update_expectation, test_split.update_data]: EPS = 0.01 if func == test_split.update_data: EPS = 0.1 to_pops[0].reset() to_pops[1].reset() func() total = 0 for i in range(2): distribution = to_pops[i].future frac = fracs[i] sum_p = 0. sum_tp = 0. sum_ttp = 0. for i in range(len(distribution)): sum_p += distribution[i] sum_tp += i * distribution[i] * time_step sum_ttp += i * i * distribution[i] * time_step ** 2 total += sum_p assert np.abs(sum_p - start * frac) < EPS * start * frac est_mean = sum_tp / (start * frac) assert np.abs(est_mean - mean) < EPS * mean est_sigma = np.sqrt(sum_ttp / (start * frac) - est_mean ** 2) assert np.abs(est_sigma - std_dev) < EPS * std_dev assert np.abs(total - start) < 0.1
def test_class_Multiplier(): """tests to ensure the behaviour class Multiplier""" test_model = Model('test_model') EPS = 1. n1 = 50. n2 = 20. n3 = 2. scale = 0.1 f_pops = [Population('f1_pop', n1), Population('f2_pop', n2), Population('f3_pop', n3)] to_pop = Population('to_pop', 0.) scale_par = Parameter('alpha', scale) delay = Delay('fast', 'fast') test_multiplier = Multiplier('test_multiplier', f_pops, to_pop, scale_par, delay, model=test_model) test_model.add_connector(test_multiplier) for time_step in [1., 1. / 4.]: test_model.set_time_step(time_step) # expectation: expected = n1 * n2 / n3 * scale * time_step to_pop.reset() test_multiplier.set_distribution('poisson', None) test_multiplier.update_expectation() assert to_pop.future[0] == expected # Poisson n_rep = 1000 n_list = [] for i in range(n_rep): to_pop.reset() test_multiplier.update_data() n_list.append(to_pop.future[0]) assert np.abs(np.mean(n_list) - expected) < EPS assert np.abs(np.std(n_list) - np.sqrt(expected)) < EPS # Negative binomial p_nb = 0.2 nbinom_par = Parameter('nb', p_nb) test_multiplier.set_distribution('nbinom', nbinom_par) n_rep = 1000 n_list = [] for i in range(n_rep): to_pop.reset() test_multiplier.update_data() n_list.append(to_pop.future[0]) assert np.abs(np.mean(n_list) - expected) < EPS assert np.abs(np.std(n_list) - np.sqrt(expected / p_nb)) < EPS
def test_class_Propagator(): """tests to ensure the behaviour class Propagator""" test_model = Model('test_model') start = 100000 from_pop = Population('from_pop', 0) from_pop.future = [start] to_pop = Population('to_pop', 0.) frac = 0.4 fraction = Parameter('frac', frac) mean = 10. std_dev = 4. delay_pars = { 'mean': Parameter('mean', mean, parameter_min=-100., parameter_max=100.), 'sigma': Parameter('sigma', std_dev, parameter_min=-100., parameter_max=100.) } test_delay = Delay('test_delay', 'norm', delay_parameters=delay_pars, model=test_model) test_prop = Propagator('test_prop', from_pop, to_pop, fraction, test_delay) test_model.add_connector(test_prop) for time_step in [1., 1. / 4.]: test_model.set_time_step(time_step) for func in [test_prop.update_expectation, test_prop.update_data]: EPS = 0.01 if func == test_prop.update_data: EPS = 0.1 to_pop.reset() func() distribution = to_pop.future sum_p = 0. sum_tp = 0. sum_ttp = 0. for i in range(len(distribution)): sum_p += distribution[i] sum_tp += i * distribution[i] * time_step sum_ttp += i * i * distribution[i] * time_step ** 2 assert np.abs(sum_p - start * frac) < EPS * start * frac est_mean = sum_tp / (start * frac) assert np.abs(est_mean - mean) < EPS * mean est_sigma = np.sqrt(sum_ttp / (start * frac) - est_mean ** 2) assert np.abs(est_sigma - std_dev) < EPS * std_dev
def test_class_Delay(): """tests to ensure the behaviour class Delay""" test_model = Model('test_model') EPS = 0.1 mean = 10. std_dev = 4. half_width = float(std_dev * np.sqrt(12.) / 2.) k_vals = [1, 2, 3] for delay_type in ['norm', 'uniform', 'erlang', 'gamma']: k_s = [1] if delay_type == 'erlang': k_s = k_vals for k in k_s: delay_pars = { 'mean': Parameter('mean', mean, parameter_min=-100., parameter_max=100.), 'sigma': Parameter('sigma', std_dev, parameter_min=-100., parameter_max=100.), 'half_width': Parameter('hw', half_width, parameter_min=-100., parameter_max=100.), 'k': Parameter('k', k, parameter_type='int', parameter_min=1, parameter_max=100) } for time_step in [1., 1. / 4.]: test_model.set_time_step(time_step) # The delay is created after the model: since it is not associated with a connector, the model # does not know to call its update method. (The model does not have stand alone delays.) test_delay = Delay('test_delay', delay_type, delay_parameters=delay_pars, model=test_model) distribution = test_delay.future_expectations sum_p = 0. sum_tp = 0. sum_ttp = 0. for i in range(len(distribution)): sum_p += distribution[i] sum_tp += i * distribution[i] * time_step sum_ttp += i * i * distribution[i] * time_step ** 2 assert np.abs(sum_p - 1.) < EPS est_mean = sum_tp assert np.abs(est_mean - mean) < EPS est_sigma = np.sqrt(sum_ttp - sum_tp * sum_tp) if delay_type != 'erlang': assert np.abs(est_sigma - std_dev) < EPS else: assert np.abs(est_sigma - mean / np.sqrt(1. * k)) < EPS
def test_class_Modifier(): """tests to ensure the behaviour class Modifier""" test_model = Model('test_model') mod_time = Parameter('time', 5, parameter_type='int', parameter_min=0, parameter_max=1000) par_val = 0.3 par_0_val = 0.5 par_1_val = 0.7 parameter = Parameter('par', par_val) parameter_0 = Parameter('par_0', par_0_val) parameter_1 = Parameter('par_1', par_1_val) test_modifier = Modifier('test_modifier', 'rel_days', mod_time, parameter, parameter_0, parameter_1, model=test_model) test_model.add_transition(test_modifier) for time_step in [1., 1. / 4.]: test_model.set_time_step(time_step) parameter.reset() assert parameter.get_value() == par_val test_modifier.take_action() assert parameter.get_value() == par_1_val test_modifier.reset() assert parameter.get_value() == par_0_val assert np.abs(test_modifier.trigger_step - 5 / time_step) < 0.1