def use_pyprep(srcPath, dstPath):
    summaryFile = open("./summary.txt", 'a')

    src = Path(srcPath)
    dst = Path(dstPath)

    session_list = [1, 4]
    for file in src.glob("*.txt"):

        status, uid, session, trial, task, preprocess = get_file_info(file)
        # print(file)
        if status:
            x = 0
            # if task != 'Baseline' and int(session) in session_list:
            dst_file = dst / (file.with_suffix('').name[:-3] + 'pyprep.edf')
            print("Processsing ", file.name)

            raw, montage = load_to_mne(file)

            # # #Only for debugging purposes
            # raw = raw.crop(0, 15).load_data()

            raw.crop(tmin=(raw.times[-1] - 120))  #Get only last two minutes

            # Extract some info
            eeg_index = mne.pick_types(raw.info,
                                       eeg=True,
                                       eog=False,
                                       meg=False)
            ch_names = raw.info["ch_names"]
            ch_names_eeg = list(np.asarray(ch_names)[eeg_index])
            sample_rate = raw.info["sfreq"]

            # Make a copy of the data
            raw_copy = raw.copy()

            # Fit prep
            prep_params = {
                'ref_chs': ch_names_eeg,
                'reref_chs': ch_names_eeg,
                'line_freqs': np.arange(60, sample_rate / 2, 60)
            }
            prep = PrepPipeline(raw_copy, prep_params, montage)
            prep.fit()

            final_eeg = prep.raw

            # Write pyprep summary of interpolation
            summaryFile.write(file.name + "\n")
            summaryFile.write(str(prep.interpolated_channels) + "\n")
            summaryFile.flush()

            write_data_edf(final_eeg, dst_file, uid, task)
示例#2
0
def test_prep_pipeline_filter_kwargs(raw, montage):
    """Test prep pipeline with filter kwargs."""
    eeg_index = mne.pick_types(raw.info, eeg=True, eog=False, meg=False)
    raw_copy = raw.copy()
    ch_names = raw_copy.info["ch_names"]
    ch_names_eeg = list(np.asarray(ch_names)[eeg_index])
    sample_rate = raw_copy.info["sfreq"]
    prep_params = {
        "ref_chs": ch_names_eeg,
        "reref_chs": ch_names_eeg,
        "line_freqs": np.arange(60, sample_rate / 2, 60),
    }
    filter_kwargs = {
        "method": "fir",
        "phase": "zero-double",
    }

    prep = PrepPipeline(
        raw_copy, prep_params, montage, random_state=42, filter_kwargs=filter_kwargs
    )
    prep.fit()
示例#3
0
def test_prep_pipeline_non_eeg(raw, montage):
    """Test prep pipeline with non eeg channels."""
    raw_copy = raw.copy()

    # make arbitrary non eeg channels from the register
    sfreq = raw_copy.info["sfreq"]  # Sampling frequency
    times = np.array(list(range(raw_copy._data.shape[1])))
    ch_names_non_eeg = ["misc" + str(i) for i in range(4)]
    ch_types_non_eeg = ["misc" for i in range(4)]
    raw_non_eeg, _, _ = make_random_mne_object(
        ch_names_non_eeg,
        ch_types_non_eeg,
        times,
        sfreq,
        RNG=np.random.RandomState(1337),
    )

    raw_copy.add_channels([raw_non_eeg], force_update_info=True)

    prep_params = {
        "ref_chs": "eeg",
        "reref_chs": "eeg",
        "line_freqs": np.arange(60, sfreq / 2, 60),
    }
    prep = PrepPipeline(raw_copy, prep_params, montage, random_state=42)

    prep.fit()

    # correct non-eeg channels configured in init
    assert set(prep.ch_names_non_eeg) == set(ch_names_non_eeg)
    # original (all) channel names same as full_raw names
    assert set(prep.raw.ch_names) == set(raw_copy.ch_names)
    # names of raw (only eeg)  same as full names - non eeg names
    assert set(prep.raw_eeg.ch_names) == set(raw_copy.ch_names) - set(ch_names_non_eeg)
    # quantity of raw (only eeg) same as quantity of all - non eeg lists
    assert prep.raw_eeg._data.shape[0] == len(raw_copy.ch_names) - len(
        prep.ch_names_non_eeg
    )
    # quantity of channels in is the same as qty of full raw
    assert raw_copy._data.shape[0] == prep.raw._data.shape[0]
示例#4
0
    def perform_prep(self):
        """ perform_prep
        Calls pyprep's PrepPipeline and detects bad channels in the data.

        Returns
        -------
        bad_chs : List
            List of all the bad channel names
        """

        self.automagic["prep"]["performed"] = True
        montage = mne.channels.make_standard_montage(
            self.params["interpolation_params"]["montage"])
        montage.ch_names = [
            'E37', 'E44', 'E86', 'E39', 'E87', 'E93', 'E60', 'E77', 'E61',
            'E72', 'E75', 'E50', 'E112', 'E34', 'E2', 'E51', 'E98', 'E4',
            'E42', 'E101', 'E36', 'E17', 'E88', 'E7', 'E25', 'E5', 'E18',
            'E84', 'E21', 'E49', 'E103', 'E97', 'E122', 'E71', 'E53', 'E54',
            'E32', 'E67', 'E38', 'E22', 'E114', 'E92', 'E108', 'E121', 'E3',
            'E14', 'E13', 'E64', 'E90', 'E20', 'E27', 'E107', 'E100', 'E119',
            'E47', 'E110', 'E83', 'E40', 'E117', 'E48', 'E15', 'E30', 'E26',
            'E55', 'E69', 'E79', 'E125', 'E76', 'E128', 'E41', 'E43', 'E74',
            'E24', 'E45', 'E9', 'E73', 'E102', 'E29', 'E65', 'E63', 'E12',
            'E82', 'E127', 'E56', 'E52', 'E91', 'E80', 'E95', 'E124', 'E58',
            'E31', 'E106', 'E46', 'E78', 'E6', 'E115', 'E126', 'E89', 'E96',
            'E123', 'E8', 'E66', 'E104', 'E10', 'E11', 'E118', 'E57', 'E120',
            'E99', 'E116', 'E16', 'E94', 'E111', 'E105', 'E19', 'E35', 'E109',
            'E1', 'E33', 'E68', 'E28', 'E59', 'E70', 'E113', 'E81', 'E23',
            'E85', 'E62'
        ]
        prep = PrepPipeline(self.eeg, self.params["interpolation_params"],
                            montage)
        prep = prep.fit()
        self.bad_chs = list(
            set(prep.still_noisy_channels)
            | set(prep.interpolated_channels)
            | set(prep.bad_before_interpolation))
        self.automagic.update({"auto_bad_chans": self.bad_chs})
        return self.bad_chs
示例#5
0
    def perform_prep(self):
        """ perform_prep
        Calls pyprep's PrepPipeline and detects bad channels in the data.

        Returns
        -------
        bad_chs : List
            List of all the bad channel names
        """

        self.automagic["prep"]["performed"] = True
        montage = mne.channels.make_standard_montage(
            self.params["interpolation_params"]["montage"]
        )
        prep = PrepPipeline(self.eeg, self.params["interpolation_params"], montage)
        prep = prep.fit()
        self.bad_chs = list(
            set(prep.still_noisy_channels)
            | set(prep.interpolated_channels)
            | set(prep.bad_before_interpolation)
        )
        self.automagic.update({"auto_bad_chans": self.bad_chs})
        return self.bad_chs
示例#6
0
def test_prep_pipeline(raw, montage):
    """Test prep pipeline."""
    eeg_index = mne.pick_types(raw.info, eeg=True, eog=False, meg=False)
    raw_copy = raw.copy()
    ch_names = raw_copy.info["ch_names"]
    ch_names_eeg = list(np.asarray(ch_names)[eeg_index])
    sample_rate = raw_copy.info["sfreq"]
    prep_params = {
        "ref_chs": ch_names_eeg,
        "reref_chs": ch_names_eeg,
        "line_freqs": np.arange(60, sample_rate / 2, 60),
    }
    prep = PrepPipeline(raw_copy, prep_params, montage, random_state=42)
    prep.fit()

    EEG_raw = raw_copy.get_data(picks="eeg") * 1e6
    EEG_raw_max = np.max(abs(EEG_raw), axis=None)
    EEG_raw_matlab = sio.loadmat("./examples/matlab_results/EEG_raw.mat")
    EEG_raw_matlab = EEG_raw_matlab["save_data"]
    EEG_raw_diff = EEG_raw - EEG_raw_matlab
    # EEG_raw_mse = (EEG_raw_diff / EEG_raw_max ** 2).mean(axis=None)

    fig, axs = plt.subplots(5, 3, sharex="all")
    plt.setp(fig, facecolor=[1, 1, 1])
    fig.suptitle("Python versus Matlab PREP results", fontsize=16)

    im = axs[0, 0].imshow(
        EEG_raw / EEG_raw_max,
        aspect="auto",
        extent=[0, (EEG_raw.shape[1] / sample_rate), 63, 0],
        vmin=-1,
        vmax=1,
        cmap=plt.get_cmap("RdBu"),
    )
    axs[0, 0].set_title("Python", fontsize=14)
    axs[0, 1].imshow(
        EEG_raw_matlab / EEG_raw_max,
        aspect="auto",
        extent=[0, (EEG_raw_matlab.shape[1] / sample_rate), 63, 0],
        vmin=-1,
        vmax=1,
        cmap=plt.get_cmap("RdBu"),
    )
    axs[0, 1].set_title("Matlab", fontsize=14)
    axs[0, 2].imshow(
        EEG_raw_diff / EEG_raw_max,
        aspect="auto",
        extent=[0, (EEG_raw_diff.shape[1] / sample_rate), 63, 0],
        vmin=-1,
        vmax=1,
        cmap=plt.get_cmap("RdBu"),
    )
    axs[0, 2].set_title("Difference", fontsize=14)
    # axs[0, 0].set_title('Original EEG', loc='left', fontsize=14)
    # axs[0, 0].set_ylabel('Channel Number', fontsize=14)
    cb = fig.colorbar(im, ax=axs, fraction=0.05, pad=0.04)
    cb.set_label("\u03BCVolt", fontsize=14)

    EEG_new_matlab = sio.loadmat("./examples/matlab_results/EEGNew.mat")
    EEG_new_matlab = EEG_new_matlab["save_data"]
    EEG_new = prep.EEG_new
    EEG_new_max = np.max(abs(EEG_new), axis=None)
    EEG_new_diff = EEG_new - EEG_new_matlab
    # EEG_new_mse = ((EEG_new_diff / EEG_new_max) ** 2).mean(axis=None)
    axs[1, 0].imshow(
        EEG_new / EEG_new_max,
        aspect="auto",
        extent=[0, (EEG_new.shape[1] / sample_rate), 63, 0],
        vmin=-1,
        vmax=1,
        cmap=plt.get_cmap("RdBu"),
    )
    axs[1, 1].imshow(
        EEG_new_matlab / EEG_new_max,
        aspect="auto",
        extent=[0, (EEG_new_matlab.shape[1] / sample_rate), 63, 0],
        vmin=-1,
        vmax=1,
        cmap=plt.get_cmap("RdBu"),
    )
    axs[1, 2].imshow(
        EEG_new_diff / EEG_new_max,
        aspect="auto",
        extent=[0, (EEG_new_diff.shape[1] / sample_rate), 63, 0],
        vmin=-1,
        vmax=1,
        cmap=plt.get_cmap("RdBu"),
    )
    # axs[1, 0].set_title('High pass filter', loc='left', fontsize=14)
    # axs[1, 0].set_ylabel('Channel Number', fontsize=14)

    EEG_clean_matlab = sio.loadmat("./examples/matlab_results/EEG.mat")
    EEG_clean_matlab = EEG_clean_matlab["save_data"]
    EEG_clean = prep.EEG
    EEG_max = np.max(abs(EEG_clean), axis=None)
    EEG_diff = EEG_clean - EEG_clean_matlab
    # EEG_mse = ((EEG_diff / EEG_max) ** 2).mean(axis=None)
    axs[2, 0].imshow(
        EEG_clean / EEG_max,
        aspect="auto",
        extent=[0, (EEG_clean.shape[1] / sample_rate), 63, 0],
        vmin=-1,
        vmax=1,
        cmap=plt.get_cmap("RdBu"),
    )
    axs[2, 1].imshow(
        EEG_clean_matlab / EEG_max,
        aspect="auto",
        extent=[0, (EEG_clean_matlab.shape[1] / sample_rate), 63, 0],
        vmin=-1,
        vmax=1,
        cmap=plt.get_cmap("RdBu"),
    )
    axs[2, 2].imshow(
        EEG_diff / EEG_max,
        aspect="auto",
        extent=[0, (EEG_diff.shape[1] / sample_rate), 63, 0],
        vmin=-1,
        vmax=1,
        cmap=plt.get_cmap("RdBu"),
    )
    # axs[2, 0].set_title('Line-noise removal', loc='left', fontsize=14)
    axs[2, 0].set_ylabel("Channel Number", fontsize=14)

    EEG = prep.EEG_before_interpolation
    EEG_max = np.max(abs(EEG), axis=None)
    EEG_ref_mat = sio.loadmat("./examples/matlab_results/EEGref.mat")
    EEG_ref_matlab = EEG_ref_mat["save_EEG"]
    # reference_matlab = EEG_ref_mat["save_reference"]
    EEG_ref_diff = EEG - EEG_ref_matlab
    # EEG_ref_mse = ((EEG_ref_diff / EEG_max) ** 2).mean(axis=None)
    # reference_signal = prep.reference_before_interpolation
    # reference_max = np.max(abs(reference_signal), axis=None)
    # reference_diff = reference_signal - reference_matlab
    # reference_mse = ((reference_diff / reference_max) ** 2).mean(axis=None)
    axs[3, 0].imshow(
        EEG / EEG_max,
        aspect="auto",
        extent=[0, (EEG.shape[1] / sample_rate), 63, 0],
        vmin=-1,
        vmax=1,
        cmap=plt.get_cmap("RdBu"),
    )
    axs[3, 1].imshow(
        EEG_ref_matlab / EEG_max,
        aspect="auto",
        extent=[0, (EEG_ref_matlab.shape[1] / sample_rate), 63, 0],
        vmin=-1,
        vmax=1,
        cmap=plt.get_cmap("RdBu"),
    )
    axs[3, 2].imshow(
        EEG_ref_diff / EEG_max,
        aspect="auto",
        extent=[0, (EEG_ref_diff.shape[1] / sample_rate), 63, 0],
        vmin=-1,
        vmax=1,
        cmap=plt.get_cmap("RdBu"),
    )
    # axs[3, 0].set_title('Referencing', loc='left', fontsize=14)
    # axs[3, 0].set_ylabel('Channel Number', fontsize=14)

    EEG_final = prep.raw.get_data() * 1e6
    EEG_final_max = np.max(abs(EEG_final), axis=None)
    EEG_final_matlab = sio.loadmat("./examples/matlab_results/EEGinterp.mat")
    EEG_final_matlab = EEG_final_matlab["save_data"]
    EEG_final_diff = EEG_final - EEG_final_matlab
    # EEG_final_mse = ((EEG_final_diff / EEG_final_max) ** 2).mean(axis=None)
    axs[4, 0].imshow(
        EEG_final / EEG_final_max,
        aspect="auto",
        extent=[0, (EEG_final.shape[1] / sample_rate), 63, 0],
        vmin=-1,
        vmax=1,
        cmap=plt.get_cmap("RdBu"),
    )
    axs[4, 1].imshow(
        EEG_final_matlab / EEG_final_max,
        aspect="auto",
        extent=[0, (EEG_final_matlab.shape[1] / sample_rate), 63, 0],
        vmin=-1,
        vmax=1,
        cmap=plt.get_cmap("RdBu"),
    )
    axs[4, 2].imshow(
        EEG_final_diff / EEG_final_max,
        aspect="auto",
        extent=[0, (EEG_final_diff.shape[1] / sample_rate), 63, 0],
        vmin=-1,
        vmax=1,
        cmap=plt.get_cmap("RdBu"),
    )
    # axs[4, 0].set_title('Interpolation', loc='left', fontsize=14)
    # axs[4, 0].set_ylabel('Channel Number', fontsize=14)
    axs[4, 1].set_xlabel("Time(s)", fontsize=14)
示例#7
0
# --------------------------------
#
# Notes: we keep all the default parameter settings as described in the PREP
# paper except one, the fraction of bad time windows
# (we change it from 0.01 to 0.1), because the EEG data is 60s long, which
# means it gots only 60 time windows. We think the algorithm will be too
# sensitive if using the default setting.

# Fit prep
prep_params = {
    "ref_chs": ch_names_eeg,
    "reref_chs": ch_names_eeg,
    "line_freqs": np.arange(60, sample_rate / 2, 60),
}
prep = PrepPipeline(raw_copy, prep_params, montage)
prep.fit()

###############################################################################
# Results
# -------
#
# You can check the detected bad channels in each step of PREP.

print("Bad channels: {}".format(prep.interpolated_channels))
print("Bad channels original: {}".format(
    prep.noisy_channels_original["bad_all"]))
print("Bad channels after interpolation: {}".format(prep.still_noisy_channels))

# Matlab's results
# ----------------
# Bad channels: Fc5, Fc3, Fc1, C3, Cp3, Cp4, Af3, Afz, Af8, F7, F5, F6, F8,