class FluidSystem: def __init__( self, domain, positions, velocities, masses, base_filename ): self.ot = OptimalTransport(domain, RadialFuncInBall()) self.ot.set_positions(np.array(positions)) self.ot.set_weights(np.array(masses)/np.pi) self.ot.set_masses(np.array(masses)) self.base_filename = base_filename self.cpt_display = 0 self.max_iter = 200 self.time = 0 # initial centroid positions and velocities self.ot.adjust_weights() self.centroids = self.ot.get_centroids() self.velocities = np.array(velocities) self.coeff_centroid_force = 1e-4 def display( self ): fn = "{}{}.vtk".format( self.base_filename, self.cpt_display ) self.ot.display_vtk( fn, points=True, centroids=True ) self.cpt_display += 1 def make_step( self ): ratio_dt = 1.0 while self.try_step( ratio_dt ) == False: ratio_dt *= 0.5 print( " dt ratio:", ratio_dt ) def try_step( self, ratio_dt ): old_p = self.ot.get_positions() # find dt radii_ap = ( np.array( self.ot.get_masses() ) / np.pi ) ** 0.5 vn2 = np.linalg.norm( self.velocities, axis=1, ord=2 ) dt = ratio_dt * 0.2 / np.max( np.abs( vn2 / radii_ap ) ) adv = dt * self.velocities # target centroid positions + initial guess for the dirac positions target_centroids = self.centroids + adv self.ot.set_positions( old_p + adv ) # stuff to extract centroids, masses, ... d = self.ot.dim() n = self.ot.nb_diracs() rd = np.arange( d * n, dtype=np.int ) b0 = ( d + 1 ) * np.floor_divide( rd, d ) l0 = b0 + rd % d # l1 = (d + 1) * np.arange(n, dtype=np.int) + d # find positions to fit the target centroid positions ratio = 1.0 for num_iter in range( self.max_iter + 1 ): if num_iter == self.max_iter: self.ot.set_positions( old_p ) return False # search dir mvs = self.ot.pd.der_centroids_and_integrals_wrt_weight_and_positions() if mvs.error: self.ot.set_positions( old_p ) ratio *= 0.5 if ratio < 1e-2: return False print( " solve X ratio:", ratio ) continue M = csr_matrix( ( mvs.m_values, mvs.m_columns, mvs.m_offsets ) )[ l0, : ][ :, l0 ] V = mvs.v_values[ l0 ] - target_centroids.flatten() c = self.coeff_centroid_force * np.max( M ) V += c * ( self.ot.get_positions() - target_centroids ).flatten() M += c * diag( 2 * n ) X = spsolve( M, V ).reshape( ( -1, d ) ) # if np.linalg.norm( X, ord=np.inf ) > self.max_disp_at_each_sub_iter: # X *= self.max_disp_at_each_sub_iter / np.linalg.norm( X, ord=np.inf ) self.ot.set_positions( self.ot.get_positions() - ratio * X ) e = np.linalg.norm( X ) # print( " e", e ) if e < 1e-6: break # projection # self.ot.verbosity = 1 self.ot.adjust_weights( relax=0.75 ) # update centroid pos and speed self.time += dt old_centroids = self.centroids self.centroids = self.ot.get_centroids() self.velocities = ( self.centroids - old_centroids ) / dt return True
def run(n, base_filename, l=0.5): # domain domain = ConvexPolyhedraAssembly() domain.add_box([0, 0], [1, 1]) # initial positions, weights and masses positions = [] radius = l / (2 * (n - 1)) mass = l**2 / n**2 for y in np.linspace(radius, l - radius, n): for x in np.linspace(0.5 - l / 2 + radius, 0.5 + l / 2 - radius, n): nx = x + 0.0 * radius * (np.random.rand() - 0.5) ny = y + 0.0 * radius * (np.random.rand() - 0.5) positions.append([nx, ny]) positions = np.array(positions) nb_diracs = positions.shape[0] dim = positions.shape[1] # OptimalTransport ot = OptimalTransport(domain, RadialFuncInBall()) ot.set_weights(np.ones(nb_diracs) * radius**2) ot.set_masses(np.ones(nb_diracs) * mass) ot.set_positions(positions) ot.max_iter = 100 ot.adjust_weights() ot.display_vtk(base_filename + "0.vtk", points=True, centroids=True) # gravity G = np.zeros((nb_diracs, dim)) G[:, 1] = -9.81 # eps = 0.5 dt = radius * 0.1 V = np.zeros((nb_diracs, dim)) M = np.stack([ot.get_masses() for d in range(dim)]).transpose() for num_iter in range(500): print("num_iter:", num_iter, "dt:", dt) C = ot.get_centroids() X = ot.get_positions() A = G + (C - ot.get_positions()) / (M * eps**2) while True: dV = dt * A dX = dt * (V + dV) if np.max(np.linalg.norm(dX, axis=1, ord=2)) < 0.2 * radius: dt *= 1.05 V += dV X += dX break dt *= 0.5 ot.set_positions(X) ot.adjust_weights() # display n1 = int(num_iter / 1) + 1 ot.display_vtk(base_filename + "{}.vtk".format(n1), points=True, centroids=True)