def make_case(name, nb_diracs, dim): # default domain if name == "random": positions = np.random.rand(nb_diracs, dim) elif name == "grid": positions = make_grid(nb_diracs, dim) elif name == "grid_with_rand": positions = make_grid(nb_diracs, dim, rand_val=1) elif name == "faces": # voronoi with 100 points pd = PowerDiagram(np.random.rand(5, dim)) # quantization lot = OptimalTransport(positions=make_grid(nb_diracs, dim)) lot.obj_max_dw = 1e-5 lot.verbosity = 1 for ratio in [1 - 0.85**n for n in range(50)]: # density img_size = 1000 img_points = [] items = [range(img_size) for i in range(dim)] for i in itertools.product(*items): img_points.append(i) img = pd.distances_from_boundaries( np.array(img_points) / img_size).reshape((img_size, img_size)) img = (1 - ratio) + ratio * np.exp(-(100 * img)**2) lot.set_domain(ScaledImage([0, 0], [1, 1], img / np.mean(img))) # opt for _ in range(10): lot.adjust_weights() B = lot.get_centroids() lot.set_positions(lot.get_positions() + 0.3 * (B - lot.get_positions())) positions = lot.get_positions() plt.plot(positions[:, 0], positions[:, 1], ".") plt.show() np.save("/data/{}_n{}_d{}_voro.npy".format(name, nb_diracs, dim), (positions[:, 0], positions[:, 1])) # solve if nb_diracs < 32000000: ot = OptimalTransport(positions) # ot.verbosity = 1 # solve ot.adjust_weights() # display # ot.display_vtk( "results/pd.vtk" ) np.save("/data/{}_n{}_d{}.npy".format(name, nb_diracs, dim), (positions[:, 0], positions[:, 1], ot.get_weights()))
def proj_noncongested(points, domain, center=None, mass=None, radial_func=RadialFuncInBall(), verbose=None): nb_points = len(points) assert (nb_points != 0) if mass is None: mass = np.ones(nb_points) / nb_points laguerre = OptimalTransport(positions=points, weights=None, masses=mass, domain=domain, radial_func=radial_func, linear_solver="CuPyx") if not center is None: initialize_weights(power_diagram=laguerre.pd, center=center, verbose=verbose) laguerre.adjust_weights(relax=1) if np.linalg.norm(laguerre.pd.integrals() - mass) > 1e-5: print("The Newton algorithm did not converge!") laguerre.display_vtk("debug_file/bad_Newton.vtk", points=True) laguerre.get_domain().display_boundaries_vtk( "debug_file/bad_Newton_domain.vtk") np.save("debug_file/bad_positions", laguerre.get_positions()) np.save("debug_file/integrals", laguerre.pd.integrals()) np.save("debug_file/bad_weights", laguerre.get_weights()) assert (False) return laguerre.pd
def run(n, base_filename): domain = ConvexPolyhedraAssembly() domain.add_box([0, 0], [1, 1]) domain.add_box([0.2, -0.5], [0.8, 0]) positions = [] radius = 0.5 / (2 * (n - 1)) for y in np.linspace(radius, 0.5 + radius, n): for x in np.linspace(radius, 0.5 + radius, n): positions.append([x, y]) nb_diracs = len(positions) # ot = OptimalTransport(domain, RadialFuncInBall()) ot.set_masses(np.ones(nb_diracs) * 0.8 * 0.5**2 / nb_diracs) ot.set_weights(np.ones(nb_diracs) * radius**2) ot.set_positions(np.array(positions)) b_old = ot.pd.centroids() ot.adjust_weights() ot.display_vtk(base_filename + "0.vtk") nb_timesteps = int(20 / radius) v = np.zeros((nb_diracs, 2)) dt = 0.003 * radius for i in range(nb_timesteps): print(i, "/", nb_timesteps) # first trial v[:, 1] -= 1 p_old = ot.get_positions() p_tst = p_old + dt * v ot.set_positions(p_tst) ot.adjust_weights() # display d = int(n / 5) if i % d == 0: ot.display_vtk(base_filename + "{:03}.vtk".format(1 + int(i / d))) # corrections b_new = ot.pd.centroids() v = (b_new - b_old) / dt ot.set_positions(b_new) b_old = b_new
from pysdot.domain_types import ConvexPolyhedraAssembly from pysdot import OptimalTransport import numpy as np positions = np.random.rand(200, 2) # diracs ot = OptimalTransport() ot.set_positions(np.array(positions)) ot.set_weights(np.ones(ot.get_positions().shape[0])) ot.verbosity = 1 # solve ot.adjust_weights() # display ot.display_vtk("results/pd.vtk") # print( ot.pd.display_html() )
from pysdot import OptimalTransport from matplotlib import pyplot import numpy as np positions = [] ss = 1e-3 for x in np.linspace(0, 1 - ss, 20): positions.append([x, 0.5]) positions.append([x + ss, 0.5]) ot = OptimalTransport(np.array(positions)) ot.verbosity = 1 ot.adjust_weights() pyplot.plot(ot.get_positions()[:, 0], ot.get_weights(), '+') pyplot.show()
class FluidSystem: def __init__( self, domain, positions, velocities, masses, base_filename ): self.ot = OptimalTransport(domain, RadialFuncInBall()) self.ot.set_positions(np.array(positions)) self.ot.set_weights(np.array(masses)/np.pi) self.ot.set_masses(np.array(masses)) self.base_filename = base_filename self.cpt_display = 0 self.max_iter = 200 self.time = 0 # initial centroid positions and velocities self.ot.adjust_weights() self.centroids = self.ot.get_centroids() self.velocities = np.array(velocities) self.coeff_centroid_force = 1e-4 def display( self ): fn = "{}{}.vtk".format( self.base_filename, self.cpt_display ) self.ot.display_vtk( fn, points=True, centroids=True ) self.cpt_display += 1 def make_step( self ): ratio_dt = 1.0 while self.try_step( ratio_dt ) == False: ratio_dt *= 0.5 print( " dt ratio:", ratio_dt ) def try_step( self, ratio_dt ): old_p = self.ot.get_positions() # find dt radii_ap = ( np.array( self.ot.get_masses() ) / np.pi ) ** 0.5 vn2 = np.linalg.norm( self.velocities, axis=1, ord=2 ) dt = ratio_dt * 0.2 / np.max( np.abs( vn2 / radii_ap ) ) adv = dt * self.velocities # target centroid positions + initial guess for the dirac positions target_centroids = self.centroids + adv self.ot.set_positions( old_p + adv ) # stuff to extract centroids, masses, ... d = self.ot.dim() n = self.ot.nb_diracs() rd = np.arange( d * n, dtype=np.int ) b0 = ( d + 1 ) * np.floor_divide( rd, d ) l0 = b0 + rd % d # l1 = (d + 1) * np.arange(n, dtype=np.int) + d # find positions to fit the target centroid positions ratio = 1.0 for num_iter in range( self.max_iter + 1 ): if num_iter == self.max_iter: self.ot.set_positions( old_p ) return False # search dir mvs = self.ot.pd.der_centroids_and_integrals_wrt_weight_and_positions() if mvs.error: self.ot.set_positions( old_p ) ratio *= 0.5 if ratio < 1e-2: return False print( " solve X ratio:", ratio ) continue M = csr_matrix( ( mvs.m_values, mvs.m_columns, mvs.m_offsets ) )[ l0, : ][ :, l0 ] V = mvs.v_values[ l0 ] - target_centroids.flatten() c = self.coeff_centroid_force * np.max( M ) V += c * ( self.ot.get_positions() - target_centroids ).flatten() M += c * diag( 2 * n ) X = spsolve( M, V ).reshape( ( -1, d ) ) # if np.linalg.norm( X, ord=np.inf ) > self.max_disp_at_each_sub_iter: # X *= self.max_disp_at_each_sub_iter / np.linalg.norm( X, ord=np.inf ) self.ot.set_positions( self.ot.get_positions() - ratio * X ) e = np.linalg.norm( X ) # print( " e", e ) if e < 1e-6: break # projection # self.ot.verbosity = 1 self.ot.adjust_weights( relax=0.75 ) # update centroid pos and speed self.time += dt old_centroids = self.centroids self.centroids = self.ot.get_centroids() self.velocities = ( self.centroids - old_centroids ) / dt return True
def run(n, base_filename, l=0.5): # domain domain = ConvexPolyhedraAssembly() domain.add_box([0, 0], [1, 1]) # initial positions, weights and masses positions = [] radius = l / (2 * (n - 1)) mass = l**2 / n**2 for y in np.linspace(radius, l - radius, n): for x in np.linspace(0.5 - l / 2 + radius, 0.5 + l / 2 - radius, n): nx = x + 0.0 * radius * (np.random.rand() - 0.5) ny = y + 0.0 * radius * (np.random.rand() - 0.5) positions.append([nx, ny]) positions = np.array(positions) nb_diracs = positions.shape[0] dim = positions.shape[1] # OptimalTransport ot = OptimalTransport(domain, RadialFuncInBall()) ot.set_weights(np.ones(nb_diracs) * radius**2) ot.set_masses(np.ones(nb_diracs) * mass) ot.set_positions(positions) ot.max_iter = 100 ot.adjust_weights() ot.display_vtk(base_filename + "0.vtk", points=True, centroids=True) # gravity G = np.zeros((nb_diracs, dim)) G[:, 1] = -9.81 # eps = 0.5 dt = radius * 0.1 V = np.zeros((nb_diracs, dim)) M = np.stack([ot.get_masses() for d in range(dim)]).transpose() for num_iter in range(500): print("num_iter:", num_iter, "dt:", dt) C = ot.get_centroids() X = ot.get_positions() A = G + (C - ot.get_positions()) / (M * eps**2) while True: dV = dt * A dX = dt * (V + dV) if np.max(np.linalg.norm(dX, axis=1, ord=2)) < 0.2 * radius: dt *= 1.05 V += dV X += dX break dt *= 0.5 ot.set_positions(X) ot.adjust_weights() # display n1 = int(num_iter / 1) + 1 ot.display_vtk(base_filename + "{}.vtk".format(n1), points=True, centroids=True)
# solve for l in [2, 4, 8]: t = np.linspace(-1, 1, 100) x, y = np.meshgrid(t, t) img = np.exp(-l * (x**2 + y**2)) img /= np.mean(img) # domain ot.set_domain(ScaledImage([0, 0], [1, 1], img)) quantization(ot, 0.1, 10) # display # ot.pd.display_vtk( "results/pd.vtk", centroids=True ) # optimal transport with a simple [0,1]^2 domain ot = OptimalTransport(ot.get_positions()) ot.adjust_weights() img = ot.pd.image_integrals([0, 0], [1, 1], [100, 100]) for d in range(2): plt.subplot(1, 2, d + 1) plt.imshow(img[:, :, d] / img[:, :, 2]) plt.colorbar() plt.show() plt.plot(img[50, :, 0] / img[50, :, 2], '+') plt.show()