示例#1
0
def make_case(name, nb_diracs, dim):
    # default domain
    if name == "random":
        positions = np.random.rand(nb_diracs, dim)
    elif name == "grid":
        positions = make_grid(nb_diracs, dim)
    elif name == "grid_with_rand":
        positions = make_grid(nb_diracs, dim, rand_val=1)
    elif name == "faces":
        # voronoi with 100 points
        pd = PowerDiagram(np.random.rand(5, dim))

        # quantization
        lot = OptimalTransport(positions=make_grid(nb_diracs, dim))
        lot.obj_max_dw = 1e-5
        lot.verbosity = 1
        for ratio in [1 - 0.85**n for n in range(50)]:
            # density
            img_size = 1000
            img_points = []
            items = [range(img_size) for i in range(dim)]
            for i in itertools.product(*items):
                img_points.append(i)
            img = pd.distances_from_boundaries(
                np.array(img_points) / img_size).reshape((img_size, img_size))
            img = (1 - ratio) + ratio * np.exp(-(100 * img)**2)
            lot.set_domain(ScaledImage([0, 0], [1, 1], img / np.mean(img)))

            # opt
            for _ in range(10):
                lot.adjust_weights()
                B = lot.get_centroids()
                lot.set_positions(lot.get_positions() + 0.3 *
                                  (B - lot.get_positions()))

        positions = lot.get_positions()
        plt.plot(positions[:, 0], positions[:, 1], ".")
        plt.show()

    np.save("/data/{}_n{}_d{}_voro.npy".format(name, nb_diracs, dim),
            (positions[:, 0], positions[:, 1]))

    # solve
    if nb_diracs < 32000000:
        ot = OptimalTransport(positions)
        # ot.verbosity = 1

        # solve
        ot.adjust_weights()

        # display
        # ot.display_vtk( "results/pd.vtk" )
        np.save("/data/{}_n{}_d{}.npy".format(name, nb_diracs, dim),
                (positions[:, 0], positions[:, 1], ot.get_weights()))
def proj_noncongested(points,
                      domain,
                      center=None,
                      mass=None,
                      radial_func=RadialFuncInBall(),
                      verbose=None):
    nb_points = len(points)
    assert (nb_points != 0)
    if mass is None:
        mass = np.ones(nb_points) / nb_points
    laguerre = OptimalTransport(positions=points,
                                weights=None,
                                masses=mass,
                                domain=domain,
                                radial_func=radial_func,
                                linear_solver="CuPyx")

    if not center is None:
        initialize_weights(power_diagram=laguerre.pd,
                           center=center,
                           verbose=verbose)

    laguerre.adjust_weights(relax=1)

    if np.linalg.norm(laguerre.pd.integrals() - mass) > 1e-5:
        print("The Newton algorithm did not converge!")
        laguerre.display_vtk("debug_file/bad_Newton.vtk", points=True)
        laguerre.get_domain().display_boundaries_vtk(
            "debug_file/bad_Newton_domain.vtk")
        np.save("debug_file/bad_positions", laguerre.get_positions())
        np.save("debug_file/integrals", laguerre.pd.integrals())
        np.save("debug_file/bad_weights", laguerre.get_weights())
        assert (False)
    return laguerre.pd
示例#3
0
def run(n, base_filename):
    domain = ConvexPolyhedraAssembly()
    domain.add_box([0, 0], [1, 1])
    domain.add_box([0.2, -0.5], [0.8, 0])

    positions = []
    radius = 0.5 / (2 * (n - 1))
    for y in np.linspace(radius, 0.5 + radius, n):
        for x in np.linspace(radius, 0.5 + radius, n):
            positions.append([x, y])
    nb_diracs = len(positions)

    #
    ot = OptimalTransport(domain, RadialFuncInBall())
    ot.set_masses(np.ones(nb_diracs) * 0.8 * 0.5**2 / nb_diracs)
    ot.set_weights(np.ones(nb_diracs) * radius**2)
    ot.set_positions(np.array(positions))
    b_old = ot.pd.centroids()

    ot.adjust_weights()
    ot.display_vtk(base_filename + "0.vtk")

    nb_timesteps = int(20 / radius)
    v = np.zeros((nb_diracs, 2))
    dt = 0.003 * radius
    for i in range(nb_timesteps):
        print(i, "/", nb_timesteps)
        # first trial
        v[:, 1] -= 1

        p_old = ot.get_positions()
        p_tst = p_old + dt * v

        ot.set_positions(p_tst)
        ot.adjust_weights()

        # display
        d = int(n / 5)
        if i % d == 0:
            ot.display_vtk(base_filename + "{:03}.vtk".format(1 + int(i / d)))

        # corrections
        b_new = ot.pd.centroids()
        v = (b_new - b_old) / dt
        ot.set_positions(b_new)
        b_old = b_new
示例#4
0
from pysdot.domain_types import ConvexPolyhedraAssembly
from pysdot import OptimalTransport
import numpy as np

positions = np.random.rand(200, 2)

# diracs
ot = OptimalTransport()
ot.set_positions(np.array(positions))
ot.set_weights(np.ones(ot.get_positions().shape[0]))
ot.verbosity = 1

# solve
ot.adjust_weights()

# display
ot.display_vtk("results/pd.vtk")

# print( ot.pd.display_html() )
示例#5
0
from pysdot import OptimalTransport
from matplotlib import pyplot
import numpy as np

positions = []
ss = 1e-3
for x in np.linspace(0, 1 - ss, 20):
    positions.append([x, 0.5])
    positions.append([x + ss, 0.5])

ot = OptimalTransport(np.array(positions))
ot.verbosity = 1
ot.adjust_weights()

pyplot.plot(ot.get_positions()[:, 0], ot.get_weights(), '+')
pyplot.show()
示例#6
0
class FluidSystem:
    def __init__( self, domain, positions, velocities, masses, base_filename ):
        self.ot = OptimalTransport(domain, RadialFuncInBall())
        self.ot.set_positions(np.array(positions))
        self.ot.set_weights(np.array(masses)/np.pi)
        self.ot.set_masses(np.array(masses))

        self.base_filename = base_filename
        self.cpt_display = 0
        self.max_iter = 200
        self.time = 0

        # initial centroid positions and velocities
        self.ot.adjust_weights()
        self.centroids = self.ot.get_centroids()
        self.velocities = np.array(velocities)
        self.coeff_centroid_force = 1e-4

    def display( self ):
        fn = "{}{}.vtk".format( self.base_filename, self.cpt_display )
        self.ot.display_vtk( fn, points=True, centroids=True )
        self.cpt_display += 1

    def make_step( self ):
        ratio_dt = 1.0
        while self.try_step( ratio_dt ) == False:
            ratio_dt *= 0.5
            print( "  dt ratio:", ratio_dt )

    def try_step( self, ratio_dt ):
        old_p = self.ot.get_positions()

        # find dt
        radii_ap = ( np.array( self.ot.get_masses() ) / np.pi ) ** 0.5
        vn2 = np.linalg.norm( self.velocities, axis=1, ord=2 )
        dt = ratio_dt * 0.2 / np.max( np.abs( vn2 / radii_ap ) )
        adv = dt * self.velocities

        # target centroid positions + initial guess for the dirac positions
        target_centroids = self.centroids + adv
        self.ot.set_positions( old_p + adv )

        # stuff to extract centroids, masses, ...
        d = self.ot.dim()
        n = self.ot.nb_diracs()
        rd = np.arange( d * n, dtype=np.int )
        b0 = ( d + 1 ) * np.floor_divide( rd, d )
        l0 = b0 + rd % d # l1 = (d + 1) * np.arange(n, dtype=np.int) + d

        # find positions to fit the target centroid positions
        ratio = 1.0
        for num_iter in range( self.max_iter + 1 ):
            if num_iter == self.max_iter:
                self.ot.set_positions( old_p )
                return False

            # search dir
            mvs = self.ot.pd.der_centroids_and_integrals_wrt_weight_and_positions()
            if mvs.error:
                self.ot.set_positions( old_p )
                ratio *= 0.5
                if ratio < 1e-2:
                    return False
                print( "  solve X ratio:", ratio )
                continue

            M = csr_matrix( ( mvs.m_values, mvs.m_columns, mvs.m_offsets ) )[ l0, : ][ :, l0 ]
            V = mvs.v_values[ l0 ] - target_centroids.flatten()

            c = self.coeff_centroid_force * np.max( M )
            V += c * ( self.ot.get_positions() - target_centroids ).flatten()
            M += c * diag( 2 * n )

            X = spsolve( M, V ).reshape( ( -1, d ) )
            # if np.linalg.norm( X, ord=np.inf ) > self.max_disp_at_each_sub_iter:
            #     X *= self.max_disp_at_each_sub_iter / np.linalg.norm( X, ord=np.inf )

            self.ot.set_positions( self.ot.get_positions() - ratio * X )

            e = np.linalg.norm( X )
            # print( "  e", e )
            if e < 1e-6:
                break

        # projection
        # self.ot.verbosity = 1
        self.ot.adjust_weights( relax=0.75 )

        # update centroid pos and speed
        self.time += dt
        old_centroids = self.centroids
        self.centroids = self.ot.get_centroids()
        self.velocities = ( self.centroids - old_centroids ) / dt
        
        return True
示例#7
0
def run(n, base_filename, l=0.5):
    # domain
    domain = ConvexPolyhedraAssembly()
    domain.add_box([0, 0], [1, 1])

    # initial positions, weights and masses
    positions = []
    radius = l / (2 * (n - 1))
    mass = l**2 / n**2
    for y in np.linspace(radius, l - radius, n):
        for x in np.linspace(0.5 - l / 2 + radius, 0.5 + l / 2 - radius, n):
            nx = x + 0.0 * radius * (np.random.rand() - 0.5)
            ny = y + 0.0 * radius * (np.random.rand() - 0.5)
            positions.append([nx, ny])
    positions = np.array(positions)
    nb_diracs = positions.shape[0]
    dim = positions.shape[1]

    # OptimalTransport
    ot = OptimalTransport(domain, RadialFuncInBall())
    ot.set_weights(np.ones(nb_diracs) * radius**2)
    ot.set_masses(np.ones(nb_diracs) * mass)
    ot.set_positions(positions)
    ot.max_iter = 100

    ot.adjust_weights()
    ot.display_vtk(base_filename + "0.vtk", points=True, centroids=True)

    # gravity
    G = np.zeros((nb_diracs, dim))
    G[:, 1] = -9.81

    #
    eps = 0.5
    dt = radius * 0.1
    V = np.zeros((nb_diracs, dim))
    M = np.stack([ot.get_masses() for d in range(dim)]).transpose()
    for num_iter in range(500):
        print("num_iter:", num_iter, "dt:", dt)
        C = ot.get_centroids()
        X = ot.get_positions()

        A = G + (C - ot.get_positions()) / (M * eps**2)

        while True:
            dV = dt * A
            dX = dt * (V + dV)
            if np.max(np.linalg.norm(dX, axis=1, ord=2)) < 0.2 * radius:
                dt *= 1.05
                V += dV
                X += dX
                break
            dt *= 0.5

        ot.set_positions(X)
        ot.adjust_weights()

        # display
        n1 = int(num_iter / 1) + 1
        ot.display_vtk(base_filename + "{}.vtk".format(n1),
                       points=True,
                       centroids=True)
示例#8
0
# solve
for l in [2, 4, 8]:
    t = np.linspace(-1, 1, 100)
    x, y = np.meshgrid(t, t)
    img = np.exp(-l * (x**2 + y**2))
    img /= np.mean(img)

    # domain
    ot.set_domain(ScaledImage([0, 0], [1, 1], img))
    quantization(ot, 0.1, 10)

# display
# ot.pd.display_vtk( "results/pd.vtk", centroids=True )

# optimal transport with a simple [0,1]^2 domain
ot = OptimalTransport(ot.get_positions())
ot.adjust_weights()

img = ot.pd.image_integrals([0, 0], [1, 1], [100, 100])

for d in range(2):
    plt.subplot(1, 2, d + 1)
    plt.imshow(img[:, :, d] / img[:, :, 2])
    plt.colorbar()

plt.show()

plt.plot(img[50, :, 0] / img[50, :, 2], '+')
plt.show()