示例#1
0
def specaud():
    from datetime import date
    from pathlib import Path
    from pyexcelerate import Workbook
    from rfpack.validatabc import validatab
    from rfpack.customparamc import customparam
    from rfpack.pntopdc import pntopd
    from rfpack.graffullc import graffull
    from rfpack.csvfrmxlsxc import xlsxfmcsv
    proglabel2.config(text="")  # label init
    datab = Path('C:/SQLite/20200522_sqlite.db')
    pdf_file = date.today().strftime("%y%m%d") + '_Feat1ParAudit.pdf'
    pdf_path = datab.parent / pdf_file
    xls_file = Path(pdf_path.with_suffix('.xlsx'))
    wb = Workbook()  # pyexcelerate Workbook
    fndtbl = datab.parent / Path('findtable.csv')
    tbcstm = datab.parent / Path('tabcustom.csv')
    validatab(datab, fndtbl, tbcstm)  # locate input tab/parameters in dbabase
    pnglist, sheetsdic = customparam(datab, 'tab_par', 5, root, my_progress,
                                     proglabel2)  # generates png files
    # print Total info in 4 pages, 3 regions per page, bar starts at 60%
    pnglist1 = graffull(xls_file, 'Total', 4, 60, root, my_progress,
                        proglabel2)
    pnglist1.extend(pnglist)  # review png at the beginning
    pntopd(pdf_path, pnglist1, 50, 550, 500, 500)  # png to pdf
    xlsxfmcsv(xls_file, sheetsdic, 75, root, my_progress, proglabel2)
    my_progress[
        'value'] = 100  # prog bar increase a cording to i steps in loop
    proglabel2.config(text=my_progress['value'])
    response = messagebox.showinfo("Specific Audit", "Process Finished")
    proglabel3 = Label(root, text=response)
    my_progress['value'] = 0  # prog bar increase according to i steps in loop
    proglabel2.config(text="   ")
    root.update_idletasks()
示例#2
0
        pngname = 'sumrzd' + str(j + 1) + '.png'
        pngfile = xls_file.parent / pngname
        smrzd_plot.save(pngfile, width=20, height=10, dpi=300)
        pnglist1.append(pngfile)
    return pnglist1


rffl = 'C:/SQLite/tablasSQL.csv'
today = date.today()
clmntp = 'xlsxsheets'
pthfnc = 'c:/sqlite/'
wrkfl = 'C:/SQLite/200825_Feat1ParAudit.xlsx'
xls_file = Path(wrkfl)
rfflph = Path(rffl)
print(xls_file.stem)
print(xls_file.name)
print(xls_file.parent)
print(xls_file.suffixes)
tit = today.strftime("%y%m%d") + '_ParameterAudit'
pdf_file = tit + ".pdf"
pdf_path = xls_file.parent / pdf_file
sheetsdic = get_sheet_details(
    xls_file)  # get sheet names and ids without opening xlsx file
df = get_sheetid_bynamef(rfflph, clmntp,
                         sheetsdic)  # xlsxsheets column from csv table file
# df = get_sheetid_bynamei("Total", sheetsdic)  # get sheet id from Total sheet
csvfrmxlsx(xls_file, df)  # df with sheets to be converted
pnglist1 = graffull(xls_file, df,
                    4)  # print Total info in 4 pages, 3 regions per page
pntopd(pdf_path, pnglist1, 50, 550, 500, 500)
示例#3
0
                          text='SQLite error: %s' % (' '.join(error.args)))
        feedbk.pack()
    c.close()
    conn.close()


# proglabel2.config(text="")  # label init
datab = Path('C:/SQLite/20201121_sqlite.db')
pdf_file = date.today().strftime("%y%m%d") + '_Feat1ParAudit.pdf'
pdf_path = datab.parent / pdf_file
xls_file = Path(pdf_path.with_suffix('.xlsx'))
wb = Workbook()  # pyexcelerate Workbook
fndtbl = datab.parent / Path('findtable.csv')
tbcstm = datab.parent / Path('tabcustom.csv')
validatab(datab, fndtbl, tbcstm)  # locate input tab/parameters in dbabase
pnglist, sheetsdic = customparam(datab, 'tab_par', 5)  # generates png files
# pnglist, sheetsdic = customparam(datab, 'tab_par', 5, root, my_progress, proglabel2) # generates png files
# print Total info in 4 pages, 3 regions per page, bar starts at 60%
pnglist1 = graffull(xls_file, 'Total', 4, 60, root, my_progress, proglabel2)
pnglist1.extend(pnglist)  # review png at the beginning
pntopd(pdf_path, pnglist1, 50, 550, 500, 500)  # png to pdf
xlsxfmcsv(xls_file, sheetsdic, 75, root, my_progress, proglabel2)
# my_progress['value'] = 100  # prog bar increase a cording to i steps in loop
# proglabel2.config(text=my_progress['value'])
# response = messagebox.showinfo("Specific Audit", "Process Finished")
# proglabel3 = Label(root, text=response)
# my_progress['value'] = 0  # prog bar increase according to i steps in loop
# proglabel2.config(text="   ")
# root.update_idletasks()
# try to put progress inside routine and avoid to exit from app
示例#4
0
def customparam(ruta, datb, tab_par):
    import pandas as pd
    from pathlib import Path
    from datetime import date
    import sqlite3
    # from pyexcelerate import Workbook
    from pyexcelerate_to_excel import pyexcelerate_to_excel
    from pyexcelerate_to_excel import Workbook
    from rfpack.carriersc import carriers
    from rfpack.carrierlc import carrierl
    from rfpack.carrtextc import carrtext
    from rfpack.carrtexlc import carrtexl
    from rfpack.statzonc import statzon
    from rfpack.par_auditc import par_audit
    from rfpack.cleaniparm2c import cleaniparm2
    from rfpack.pntopdc import pntopd
    from rfpack.tabconvc import tabconv

    dat_dir = Path(ruta)
    db_path1 = dat_dir / datb
    today = date.today()
    wb = Workbook()  # pyexcelerate Workbook
    pnglist = []
    tit = today.strftime("%y%m%d") + '_Feat1ParAudit'
    xls_file = tit + ".xlsx"
    xls_path = dat_dir / xls_file
    pdf_file = tit + ".pdf"
    pdf_path = dat_dir / pdf_file
    conn = sqlite3.connect(db_path1)  # database connection
    c = conn.cursor()
    ftab1 = tab_par + '.csv'  # tables and parameters to audit
    df = pd.read_csv(dat_dir / ftab1)
    df1 = df.groupby('table_name')['parameter'].apply(list).reset_index(
        name='parlist')
    for index, row in df1.iterrows():  # table row iteration
        # print(row['table_name'], row['parlist'])
        line = row['table_name']
        namtoinx = 'LNCELname'  # default values for lncel related tables
        carrfilt = 'earfcnDL'
        if line == 'RNFC' or line == 'LNBTS':  # carrier count - amount of graphs 1 for BTS
            n = 1  # 2 individual tables
        else:
            n = 5  # 11 tables with carries to graph
        for i in range(0, n):  # loop for each carrier
            paramst1 = row['parlist']  # parameter list
            if line == 'WCEL':
                paramsext = ('Prefijo', 'WBTS_id', 'UARFCN', 'WCELname',
                             'Banda')
                carr = carriers(i)
                cart = carrtext(i)
                namtoinx = 'WCELname'
                carrfilt = 'UARFCN'
            elif line == 'ANRPRL':
                paramsext = ('Prefijo', 'LNBTS_id', 'targetCarrierFreq',
                             'LNBTSname', 'Banda')
                carr = carrierl(i)  # carrier number
                cart = carrtexl(i)
                namtoinx = 'LNBTSname'
                carrfilt = 'targetCarrierFreq'
            elif line == 'RNFC':
                paramsext = ('Prefijo', 'RNC_id', 'RNCname')
                carr = 'RNC'
                namtoinx = 'RNCname'
            elif line == 'LNBTS':
                paramsext = ('Prefijo', 'LNBTSname')
                carr = 'LNBTS'
                namtoinx = 'LNBTSname'
            else:  # add columns to include in table query
                paramsext = ('Prefijo', 'LNBTS_id', 'earfcnDL', 'LNCELname',
                             'Banda')
                carr = carrierl(i)  # carrier number
                cart = carrtexl(i)
            paramst1.extend(paramsext)
            parstring = ','.join(paramst1)
            tabsq = tabconv(line)  # select reference table to get info
            try:  # include queries for all and carrier, pending
                if line == 'LNBTS' or line == 'RNFC' or line == 'WBTS':
                    df = pd.read_sql_query("select " + parstring + " from " +
                                           tabsq + ";",
                                           conn,
                                           index_col=[namtoinx, 'Prefijo'])
                else:  # 11 carrier related tables
                    if carr == 'all':
                        df = pd.read_sql_query("select " + parstring +
                                               " from " + tabsq + ";",
                                               conn,
                                               index_col=[namtoinx, 'Prefijo'])
                    else:
                        df = pd.read_sql_query(
                            "select " + parstring + " from " + tabsq +
                            " where (" + str(carrfilt) + " = " + str(carr) +
                            ");",
                            conn,
                            index_col=[namtoinx, 'Prefijo'])
                    df = df.dropna(subset=[
                        'Banda'
                    ])  # drop rows with band nan REVIEW IF NECESSARY
                print(df)  # continue to process
                stpref = statzon(df)  # stats per parameter and prefijo
                st = par_audit(df)  # stats per parameter full set
                output = 'parametros.csv'
                st.to_csv(dat_dir / output)
                pyexcelerate_to_excel(wb, st, sheet_name=str(carr), index=True)
                df, st = cleaniparm2(
                    df, st)  # standardized params and NaN>0.15*n removal
                st['topdisc'] = range(len(st))  # top disc counter by IQR-CV
                st['topdisc'] = st['topdisc'].floordiv(
                    10)  # split disc in groups by 10
                st.sort_values(by=['Median'], inplace=True,
                               ascending=[False])  # for better visualization
                st['counter'] = range(
                    len(st))  # counter controls number of boxplots
                st['counter'] = st['counter'].floordiv(
                    10)  # split parameters in groups by 10
                cols = ['StdDev', 'Mean', 'Median', 'Max', 'Min', 'CV']
                st[cols] = st[cols].round(
                    1)  # scales colums with 1 decimal digit
                stpref[cols] = stpref[cols].round(1)  # Prefijo info
                # concat info to put text in boxplots
                st['concat'] = st['StdDev'].astype(
                    str) + ', ' + st['NoModeQty'].astype(str)
                stpref['concat'] = stpref['StdDev'].astype(
                    str) + ', ' + stpref['NoModeQty'].astype(str)
                ldcol = list(st.index)  # parameters to include in melt command
                # Structuring df1 according to ‘tidy data‘ standard
                df.reset_index(
                    level=(0, 1),
                    inplace=True)  # to use indexes in melt operation
                df1 = df.melt(
                    id_vars=['Prefijo'],
                    value_vars=ldcol,  # WCELName is not used
                    var_name='parameter',
                    value_name='value')
                df1 = df1.dropna(subset=['value'])  # drop rows with value NaN
                st.reset_index(inplace=True)  # parameter from index to col
                stpref.reset_index(inplace=True)  # parameter from index to col
                temp = st[['parameter',
                           'topdisc']]  # topdisc to be included in stpref
                stpref = pd.merge(stpref, temp, on='parameter')
                result = pd.merge(
                    df1, st, on='parameter')  # merge by columns not by index
                resultzon = pd.merge(df1, stpref,
                                     on=['parameter', 'Prefijo'
                                         ])  # merge by columns not by index
                # graph code
                custom_axis = theme(
                    axis_text_x=element_text(color="grey",
                                             size=6,
                                             angle=90,
                                             hjust=.3),
                    axis_text_y=element_text(color="grey", size=6),
                    plot_title=element_text(size=25, face="bold"),
                    axis_title=element_text(size=10),
                    panel_spacing_x=1.6,
                    panel_spacing_y=.45,
                    # 2nd value number of rows and colunms
                    figure_size=(5 * 4, 3.5 * 4))
                # ggplot code:value 'concat' is placed in coordinate (parameter, stddev)
                my_plot = (
                    ggplot(data=result, mapping=aes(x='parameter', y='value'))
                    + geom_boxplot() + geom_text(
                        data=st,
                        mapping=aes(x='parameter', y='StdDev', label='concat'),
                        color='red',
                        va='top',
                        ha='left',
                        size=7,
                        nudge_x=.6,
                        nudge_y=-1.5) + facet_wrap('counter', scales='free') +
                    custom_axis + scale_y_continuous(trans=asinh_trans) +
                    ylab("Values") + xlab("Parameters") +
                    labs(title=line + " Parameter Audit " + cart) +
                    coord_flip())
                pngname = str(carr) + ".png"  # saveplot
                pngfile = dat_dir / pngname
                my_plot.save(pngfile, width=20, height=10, dpi=300)
                pnglist.append(pngfile)  # plots to be printed in pdf
                n = 2  # top 2 plots
                for j in range(0, n):
                    toplot = resultzon.loc[
                        resultzon['topdisc'] ==
                        j]  # filter info for parameter set to be printed
                    toplot1 = stpref.loc[stpref['topdisc'] == j]
                    custom_axis = theme(
                        axis_text_x=element_text(color="grey",
                                                 size=7,
                                                 angle=90,
                                                 hjust=.3),
                        axis_text_y=element_text(color="grey", size=7),
                        plot_title=element_text(size=25, face="bold"),
                        axis_title=element_text(size=10),
                        panel_spacing_x=0.6,
                        panel_spacing_y=.45,
                        # 2nd value number of rows and colunms
                        figure_size=(5 * 4, 3.5 * 4))
                    top_plot = (ggplot(data=toplot,
                                       mapping=aes(x='parameter', y='value')) +
                                geom_boxplot() +
                                geom_text(data=toplot1,
                                          mapping=aes(x='parameter',
                                                      y='StdDev',
                                                      label='concat'),
                                          color='red',
                                          va='top',
                                          ha='left',
                                          size=7,
                                          nudge_x=.6,
                                          nudge_y=-1.5) +
                                facet_wrap('Prefijo') + custom_axis +
                                scale_y_continuous(trans=asinh_trans) +
                                ylab("Values") + xlab("Parameters") +
                                labs(title="Top " + str(j + 1) +
                                     " Disc Parameter per Zone. " + cart) +
                                coord_flip())
                    pngname = str(carr) + str(j + 1) + ".png"
                    pngfile = dat_dir / pngname
                    top_plot.save(pngfile, width=20, height=10, dpi=300)
                    pnglist.append(pngfile)
            except sqlite3.Error as error:  # sqlite error handling.
                print('SQLite error: %s' % (' '.join(error.args)))
                feedbk = tk.Label(top,
                                  text='SQLite error: %s' %
                                  (' '.join(error.args)))
                feedbk.pack()
    wb.save(xls_path)
    pntopd(pdf_path, pnglist, 50, 550, 500, 500)
    c.close()
    conn.close()