示例#1
0
    def setUp(self):
        """
        A function run before each unit test in this class.
        """
        self.nC4H10O = Species(
            label = 'n-C4H10O',
            conformer = Conformer(
                E0 = (-317.807,'kJ/mol'),
                modes = [
                    IdealGasTranslation(mass=(74.07,"g/mol")),
                    NonlinearRotor(inertia=([41.5091,215.751,233.258],"amu*angstrom^2"), symmetry=1),
                    HarmonicOscillator(frequencies=([240.915,341.933,500.066,728.41,809.987,833.93,926.308,948.571,1009.3,1031.46,1076,1118.4,1184.66,1251.36,1314.36,1321.42,1381.17,1396.5,1400.54,1448.08,1480.18,1485.34,1492.24,1494.99,1586.16,2949.01,2963.03,2986.19,2988.1,2995.27,3026.03,3049.05,3053.47,3054.83,3778.88],"cm^-1")),
                    HinderedRotor(inertia=(0.854054,"amu*angstrom^2"), symmetry=1, fourier=([[0.25183,-1.37378,-2.8379,0.0305112,0.0028088], [0.458307,0.542121,-0.599366,-0.00283925,0.0398529]],"kJ/mol")),
                    HinderedRotor(inertia=(8.79408,"amu*angstrom^2"), symmetry=1, fourier=([[0.26871,-0.59533,-8.15002,-0.294325,-0.145357], [1.1884,0.99479,-0.940416,-0.186538,0.0309834]],"kJ/mol")),
                    HinderedRotor(inertia=(7.88153,"amu*angstrom^2"), symmetry=1, fourier=([[-4.67373,2.03735,-6.25993,-0.27325,-0.048748], [-0.982845,1.76637,-1.57619,0.474364,-0.000681718]],"kJ/mol")),
                    HinderedRotor(inertia=(2.81525,"amu*angstrom^2"), symmetry=3, barrier=(2.96807,"kcal/mol")),
                ],
                spinMultiplicity = 1,
                opticalIsomers = 1,
            ),
            molecularWeight = (74.07,"g/mol"),
            transportData=TransportData(sigma=(5.94, 'angstrom'), epsilon=(559, 'K')),
            energyTransferModel = SingleExponentialDown(alpha0=(447.5*0.011962,"kJ/mol"), T0=(300,"K"), n=0.85),
        )
        
        self.nC4H8 = Species(
            label = 'n-C4H8',
            conformer = Conformer(
                E0 = (-17.8832,'kJ/mol'),
                modes = [
                    IdealGasTranslation(mass=(56.06,"g/mol")),
                    NonlinearRotor(inertia=([22.2748,122.4,125.198],"amu*angstrom^2"), symmetry=1),
                    HarmonicOscillator(frequencies=([308.537,418.67,636.246,788.665,848.906,936.762,979.97,1009.48,1024.22,1082.96,1186.38,1277.55,1307.65,1332.87,1396.67,1439.09,1469.71,1484.45,1493.19,1691.49,2972.12,2994.31,3018.48,3056.87,3062.76,3079.38,3093.54,3174.52],"cm^-1")),
                    HinderedRotor(inertia=(5.28338,"amu*angstrom^2"), symmetry=1, fourier=([[-0.579364,-0.28241,-4.46469,0.143368,0.126756], [1.01804,-0.494628,-0.00318651,-0.245289,0.193728]],"kJ/mol")),
                    HinderedRotor(inertia=(2.60818,"amu*angstrom^2"), symmetry=3, fourier=([[0.0400372,0.0301986,-6.4787,-0.0248675,-0.0324753], [0.0312541,0.0538,-0.493785,0.0965968,0.125292]],"kJ/mol")),
                ],
                spinMultiplicity = 1,
                opticalIsomers = 1,
            ),
        )
        
        self.H2O = Species(
            label = 'H2O',
            conformer = Conformer(
                E0 = (-269.598,'kJ/mol'),
                modes = [
                    IdealGasTranslation(mass=(18.01,"g/mol")),
                    NonlinearRotor(inertia=([0.630578,1.15529,1.78586],"amu*angstrom^2"), symmetry=2),
                    HarmonicOscillator(frequencies=([1622.09,3771.85,3867.85],"cm^-1")),
                ],
                spinMultiplicity = 1,
                opticalIsomers = 1,
            ),
        )

        self.configuration = Configuration(self.nC4H8, self.H2O)
示例#2
0
 def setUp(self):
     """
     A function run before each unit test in this class.
     """
     self.inertia = 1.56764
     self.symmetry = 3
     self.barrier = 11.373
     self.quantum = True
     self.mode = HinderedRotor(
         inertia=(self.inertia, "amu*angstrom^2"),
         symmetry=self.symmetry,
         barrier=(self.barrier, "kJ/mol"),
         fourier=([[4.58375, 0.841648, -5702.71, 6.02657, 4.7446],
                   [0.726951, -0.677255, 0.207032, 0.553307,
                    -0.503303]], "J/mol"),
         quantum=self.quantum,
     )
示例#3
0
class StatMechJob:
    """
    A representation of a CanTherm statistical mechanics job. This job is used
    to compute and save the statistical mechanics information for a single
    species or transition state.
    """
    def __init__(self, species, path):
        self.species = species
        self.path = path
        self.modelChemistry = ''
        self.frequencyScaleFactor = 1.0
        self.includeHinderedRotors = True
        self.applyBondEnergyCorrections = True

    def execute(self, outputFile=None, plot=False):
        """
        Execute the statistical mechanics job, saving the results to the
        given `outputFile` on disk.
        """
        self.load()
        if outputFile is not None:
            self.save(outputFile)

    def load(self):
        """
        Load the statistical mechanics parameters for each conformer from
        the associated files on disk. Creates :class:`Conformer` objects for
        each conformer and appends them to the list of confomers on the
        species object.
        """
        logging.info(
            'Loading statistical mechanics parameters for {0}...'.format(
                self.species.label))

        path = self.path

        TS = isinstance(self.species, TransitionState)

        global_context = {
            '__builtins__': None,
        }
        local_context = {
            '__builtins__': None,
            'True': True,
            'False': False,
            'HinderedRotor': hinderedRotor,
            # File formats
            'GaussianLog': GaussianLog,
            'QchemLog': QchemLog,
            'MoleProLog': MoleProLog,
            'ScanLog': ScanLog,
        }

        directory = os.path.abspath(os.path.dirname(path))

        with open(path, 'r') as f:
            try:
                exec f in global_context, local_context
            except (NameError, TypeError, SyntaxError), e:
                logging.error('The species file {0} was invalid:'.format(path))
                raise

        try:
            atoms = local_context['atoms']
        except KeyError:
            raise InputError(
                'Required attribute "atoms" not found in species file {0!r}.'.
                format(path))

        try:
            bonds = local_context['bonds']
        except KeyError:
            bonds = {}

        try:
            linear = local_context['linear']
        except KeyError:
            raise InputError(
                'Required attribute "linear" not found in species file {0!r}.'.
                format(path))

        try:
            externalSymmetry = local_context['externalSymmetry']
        except KeyError:
            raise InputError(
                'Required attribute "externalSymmetry" not found in species file {0!r}.'
                .format(path))

        try:
            spinMultiplicity = local_context['spinMultiplicity']
        except KeyError:
            raise InputError(
                'Required attribute "spinMultiplicity" not found in species file {0!r}.'
                .format(path))

        try:
            opticalIsomers = local_context['opticalIsomers']
        except KeyError:
            raise InputError(
                'Required attribute "opticalIsomers" not found in species file {0!r}.'
                .format(path))

        try:
            energy = local_context['energy']
        except KeyError:
            raise InputError(
                'Required attribute "energy" not found in species file {0!r}.'.
                format(path))
        if isinstance(energy, dict):
            try:
                energy = energy[self.modelChemistry]
            except KeyError:
                raise InputError(
                    'Model chemistry {0!r} not found in from dictionary of energy values in species file {1!r}.'
                    .format(self.modelChemistry, path))
        if isinstance(energy, GaussianLog):
            energyLog = energy
            E0 = None
            energyLog.path = os.path.join(directory, energyLog.path)
        elif isinstance(energy, QchemLog):
            energyLog = energy
            E0 = None
            energyLog.path = os.path.join(directory, energyLog.path)
        elif isinstance(energy, MoleProLog):
            energyLog = energy
            E0 = None
            energyLog.path = os.path.join(directory, energyLog.path)
        elif isinstance(energy, float):
            energyLog = None
            E0 = energy

        try:
            geomLog = local_context['geometry']
        except KeyError:
            raise InputError(
                'Required attribute "geometry" not found in species file {0!r}.'
                .format(path))
        geomLog.path = os.path.join(directory, geomLog.path)

        try:
            statmechLog = local_context['frequencies']
        except KeyError:
            raise InputError(
                'Required attribute "frequencies" not found in species file {0!r}.'
                .format(path))
        statmechLog.path = os.path.join(directory, statmechLog.path)

        if 'frequencyScaleFactor' in local_context:
            logging.warning(
                'Ignoring frequency scale factor in species file {0!r}.'.
                format(path))

        try:
            rotors = local_context['rotors']
        except KeyError:
            rotors = []

        # But don't consider hindered rotors if flag is not set
        if not self.includeHinderedRotors:
            rotors = []

        logging.debug('    Reading molecular degrees of freedom...')
        conformer = statmechLog.loadConformer(
            symmetry=externalSymmetry,
            spinMultiplicity=spinMultiplicity,
            opticalIsomers=opticalIsomers)

        logging.debug('    Reading optimized geometry...')
        coordinates, number, mass = geomLog.loadGeometry()
        conformer.coordinates = (coordinates, "angstroms")
        conformer.number = number
        conformer.mass = (mass, "amu")

        logging.debug('    Reading energy...')
        # The E0 that is read from the log file is without the ZPE and corresponds to E_elec
        if E0 is None:
            E0 = energyLog.loadEnergy(self.frequencyScaleFactor)
        else:
            E0 = E0 * constants.E_h * constants.Na  # Hartree/particle to J/mol
        E0 = applyEnergyCorrections(
            E0, self.modelChemistry, atoms,
            bonds if self.applyBondEnergyCorrections else {})
        ZPE = statmechLog.loadZeroPointEnergy() * self.frequencyScaleFactor

        # The E0_withZPE at this stage contains the ZPE
        E0_withZPE = E0 + ZPE

        logging.debug('         Scaling factor used = {0:g}'.format(
            self.frequencyScaleFactor))
        logging.debug('         ZPE (0 K) = {0:g} kcal/mol'.format(ZPE /
                                                                   4184.))
        logging.debug('         E0 (0 K) = {0:g} kcal/mol'.format(E0_withZPE /
                                                                  4184.))

        conformer.E0 = (E0_withZPE * 0.001, "kJ/mol")

        # If loading a transition state, also read the imaginary frequency
        if TS:
            self.species.frequency = (statmechLog.loadNegativeFrequency() *
                                      self.frequencyScaleFactor, "cm^-1")

        # Read and fit the 1D hindered rotors if applicable
        # If rotors are found, the vibrational frequencies are also
        # recomputed with the torsional modes removed
        F = statmechLog.loadForceConstantMatrix()
        if F is not None and len(mass) > 1 and len(rotors) > 0:

            logging.debug('    Fitting {0} hindered rotors...'.format(
                len(rotors)))
            rotorCount = 0
            for scanLog, pivots, top, symmetry, fit in rotors:

                # Load the hindered rotor scan energies
                if isinstance(scanLog, GaussianLog):
                    scanLog.path = os.path.join(directory, scanLog.path)
                    Vlist, angle = scanLog.loadScanEnergies()
                    scanLogOutput = ScanLog(
                        os.path.join(
                            directory,
                            '{0}_rotor_{1}.txt'.format(self.species.label,
                                                       rotorCount + 1)))
                    scanLogOutput.save(angle, Vlist)
                elif isinstance(scanLog, QchemLog):
                    scanLog.path = os.path.join(directory, scanLog.path)
                    Vlist, angle = scanLog.loadScanEnergies()
                    scanLogOutput = ScanLog(
                        os.path.join(
                            directory,
                            '{0}_rotor_{1}.txt'.format(self.species.label,
                                                       rotorCount + 1)))
                    scanLogOutput.save(angle, Vlist)
                elif isinstance(scanLog, ScanLog):
                    scanLog.path = os.path.join(directory, scanLog.path)
                    angle, Vlist = scanLog.load()
                else:
                    raise Exception(
                        'Invalid log file type {0} for scan log.'.format(
                            scanLog.__class__))

                inertia = conformer.getInternalReducedMomentOfInertia(
                    pivots, top) * constants.Na * 1e23

                cosineRotor = HinderedRotor(inertia=(inertia,
                                                     "amu*angstrom^2"),
                                            symmetry=symmetry)
                cosineRotor.fitCosinePotentialToData(angle, Vlist)
                fourierRotor = HinderedRotor(inertia=(inertia,
                                                      "amu*angstrom^2"),
                                             symmetry=symmetry)
                fourierRotor.fitFourierPotentialToData(angle, Vlist)

                Vlist_cosine = numpy.zeros_like(angle)
                Vlist_fourier = numpy.zeros_like(angle)
                for i in range(angle.shape[0]):
                    Vlist_cosine[i] = cosineRotor.getPotential(angle[i])
                    Vlist_fourier[i] = fourierRotor.getPotential(angle[i])

                if fit == 'cosine':
                    rotor = cosineRotor
                elif fit == 'fourier':
                    rotor = fourierRotor
                elif fit == 'best':

                    rms_cosine = numpy.sqrt(
                        numpy.sum(
                            (Vlist_cosine - Vlist) * (Vlist_cosine - Vlist)) /
                        (len(Vlist) - 1)) / 4184.
                    rms_fourier = numpy.sqrt(
                        numpy.sum((Vlist_fourier - Vlist) *
                                  (Vlist_fourier - Vlist)) /
                        (len(Vlist) - 1)) / 4184.

                    # Keep the rotor with the most accurate potential
                    rotor = cosineRotor if rms_cosine < rms_fourier else fourierRotor
                    # However, keep the cosine rotor if it is accurate enough, the
                    # fourier rotor is not significantly more accurate, and the cosine
                    # rotor has the correct symmetry
                    if rms_cosine < 0.05 and rms_cosine / rms_fourier < 2.0 and rms_cosine / rms_fourier < 4.0 and symmetry == cosineRotor.symmetry:
                        rotor = cosineRotor

                    conformer.modes.append(rotor)

                    self.plotHinderedRotor(angle, Vlist, cosineRotor,
                                           fourierRotor, rotor, rotorCount,
                                           directory)

                    rotorCount += 1

            logging.debug(
                '    Determining frequencies from reduced force constant matrix...'
            )
            frequencies = numpy.array(
                projectRotors(conformer, F, rotors, linear, TS))

            # The frequencies have changed after projection, hence we need to recompute the ZPE
            # We might need to multiply the scaling factor to the frequencies
            ZPE = self.getZPEfromfrequencies(frequencies)
            E0_withZPE = E0 + ZPE
            # Reset the E0 of the conformer
            conformer.E0 = (E0_withZPE * 0.001, "kJ/mol")

        elif len(conformer.modes) > 2:
            frequencies = conformer.modes[2].frequencies.value_si
            rotors = numpy.array([])
        else:
            frequencies = numpy.array([])
            rotors = numpy.array([])

        for mode in conformer.modes:
            if isinstance(mode, HarmonicOscillator):
                mode.frequencies = (frequencies * self.frequencyScaleFactor,
                                    "cm^-1")

        self.species.conformer = conformer
示例#4
0
    def setUp(self):
        """
        A function run before each unit test in this class.
        """
        self.nC4H10O = Species(
            label='n-C4H10O',
            conformer=Conformer(
                E0=(-317.807, 'kJ/mol'),
                modes=[
                    IdealGasTranslation(mass=(74.07, "g/mol")),
                    NonlinearRotor(inertia=([41.5091, 215.751,
                                             233.258], "amu*angstrom^2"),
                                   symmetry=1),
                    HarmonicOscillator(frequencies=([
                        240.915, 341.933, 500.066, 728.41, 809.987, 833.93,
                        926.308, 948.571, 1009.3, 1031.46, 1076, 1118.4,
                        1184.66, 1251.36, 1314.36, 1321.42, 1381.17, 1396.5,
                        1400.54, 1448.08, 1480.18, 1485.34, 1492.24, 1494.99,
                        1586.16, 2949.01, 2963.03, 2986.19, 2988.1, 2995.27,
                        3026.03, 3049.05, 3053.47, 3054.83, 3778.88
                    ], "cm^-1")),
                    HinderedRotor(inertia=(0.854054, "amu*angstrom^2"),
                                  symmetry=1,
                                  fourier=([[
                                      0.25183, -1.37378, -2.8379, 0.0305112,
                                      0.0028088
                                  ],
                                            [
                                                0.458307, 0.542121, -0.599366,
                                                -0.00283925, 0.0398529
                                            ]], "kJ/mol")),
                    HinderedRotor(
                        inertia=(8.79408, "amu*angstrom^2"),
                        symmetry=1,
                        fourier=([[
                            0.26871, -0.59533, -8.15002, -0.294325, -0.145357
                        ], [1.1884, 0.99479, -0.940416, -0.186538,
                            0.0309834]], "kJ/mol")),
                    HinderedRotor(inertia=(7.88153, "amu*angstrom^2"),
                                  symmetry=1,
                                  fourier=([[
                                      -4.67373, 2.03735, -6.25993, -0.27325,
                                      -0.048748
                                  ],
                                            [
                                                -0.982845, 1.76637, -1.57619,
                                                0.474364, -0.000681718
                                            ]], "kJ/mol")),
                    HinderedRotor(inertia=(2.81525, "amu*angstrom^2"),
                                  symmetry=3,
                                  barrier=(2.96807, "kcal/mol")),
                ],
                spin_multiplicity=1,
                optical_isomers=1,
            ),
            molecular_weight=(74.07, "g/mol"),
            transport_data=TransportData(sigma=(5.94, 'angstrom'),
                                         epsilon=(559, 'K')),
            energy_transfer_model=SingleExponentialDown(
                alpha0=(447.5 * 0.011962, "kJ/mol"), T0=(300, "K"), n=0.85),
        )

        self.nC4H8 = Species(
            label='n-C4H8',
            conformer=Conformer(
                E0=(-17.8832, 'kJ/mol'),
                modes=[
                    IdealGasTranslation(mass=(56.06, "g/mol")),
                    NonlinearRotor(inertia=([22.2748, 122.4,
                                             125.198], "amu*angstrom^2"),
                                   symmetry=1),
                    HarmonicOscillator(frequencies=([
                        308.537, 418.67, 636.246, 788.665, 848.906, 936.762,
                        979.97, 1009.48, 1024.22, 1082.96, 1186.38, 1277.55,
                        1307.65, 1332.87, 1396.67, 1439.09, 1469.71, 1484.45,
                        1493.19, 1691.49, 2972.12, 2994.31, 3018.48, 3056.87,
                        3062.76, 3079.38, 3093.54, 3174.52
                    ], "cm^-1")),
                    HinderedRotor(inertia=(5.28338, "amu*angstrom^2"),
                                  symmetry=1,
                                  fourier=([[
                                      -0.579364, -0.28241, -4.46469, 0.143368,
                                      0.126756
                                  ],
                                            [
                                                1.01804, -0.494628,
                                                -0.00318651, -0.245289,
                                                0.193728
                                            ]], "kJ/mol")),
                    HinderedRotor(
                        inertia=(2.60818, "amu*angstrom^2"),
                        symmetry=3,
                        fourier=([[
                            0.0400372, 0.0301986, -6.4787, -0.0248675,
                            -0.0324753
                        ], [0.0312541, 0.0538, -0.493785, 0.0965968,
                            0.125292]], "kJ/mol")),
                ],
                spin_multiplicity=1,
                optical_isomers=1,
            ),
        )

        self.H2O = Species(
            label='H2O',
            conformer=Conformer(
                E0=(-269.598, 'kJ/mol'),
                modes=[
                    IdealGasTranslation(mass=(18.01, "g/mol")),
                    NonlinearRotor(inertia=([0.630578, 1.15529,
                                             1.78586], "amu*angstrom^2"),
                                   symmetry=2),
                    HarmonicOscillator(
                        frequencies=([1622.09, 3771.85, 3867.85], "cm^-1")),
                ],
                spin_multiplicity=1,
                optical_isomers=1,
            ),
        )

        self.N2 = Species(
            label='N2',
            molecular_weight=(28.04, "g/mol"),
            transport_data=TransportData(sigma=(3.41, "angstrom"),
                                         epsilon=(124, "K")),
            energy_transfer_model=None,
        )

        self.TS = TransitionState(
            label='TS',
            conformer=Conformer(
                E0=(-42.4373, "kJ/mol"),
                modes=[
                    IdealGasTranslation(mass=(74.07, "g/mol")),
                    NonlinearRotor(inertia=([40.518, 232.666,
                                             246.092], "u*angstrom**2"),
                                   symmetry=1,
                                   quantum=False),
                    HarmonicOscillator(frequencies=([
                        134.289, 302.326, 351.792, 407.986, 443.419, 583.988,
                        699.001, 766.1, 777.969, 829.671, 949.753, 994.731,
                        1013.59, 1073.98, 1103.79, 1171.89, 1225.91, 1280.67,
                        1335.08, 1373.9, 1392.32, 1417.43, 1469.51, 1481.61,
                        1490.16, 1503.73, 1573.16, 2972.85, 2984.3, 3003.67,
                        3045.78, 3051.77, 3082.37, 3090.44, 3190.73, 3708.52
                    ], "kayser")),
                    HinderedRotor(inertia=(2.68206, "amu*angstrom^2"),
                                  symmetry=3,
                                  barrier=(3.35244, "kcal/mol")),
                    HinderedRotor(inertia=(9.77669, "amu*angstrom^2"),
                                  symmetry=1,
                                  fourier=([[
                                      0.208938, -1.55291, -4.05398, -0.105798,
                                      -0.104752
                                  ],
                                            [
                                                2.00518, -0.020767, -0.333595,
                                                0.137791, -0.274578
                                            ]], "kJ/mol")),
                ],
                spin_multiplicity=1,
                optical_isomers=1,
            ),
            frequency=(-2038.34, 'cm^-1'),
        )

        self.reaction = Reaction(
            label='dehydration',
            reactants=[self.nC4H10O],
            products=[self.nC4H8, self.H2O],
            transition_state=self.TS,
        )

        self.network = Network(
            label='n-butanol',
            isomers=[Configuration(self.nC4H10O)],
            reactants=[],
            products=[Configuration(self.nC4H8, self.H2O)],
            path_reactions=[self.reaction],
            bath_gas={self.N2: 1.0},
        )
示例#5
0
    inertia=(inertia, "amu*angstrom^2"),
    symmetry=symmetry,
)
Q = mode.get_partition_function(T)
print('FreeRotor')
print('1/Q: %.2f' % (1 / Q))
print('V/RT: %.1f' % (0))
entropy = mode.get_entropy(T)
print('S: %.3f' % (entropy / 4.184))
print('')
############################################################################

barrier = 16 * (constants.R * T) / 1000
mode = HinderedRotor(
    inertia=(inertia, "amu*angstrom^2"),
    symmetry=symmetry,
    barrier=(barrier, "kJ/mol"),
    quantum=True,
)
print('HinderedRotor')
phi = np.arange(0.0, 2 * constants.pi + 0.0001, constants.pi / 18.)
potential = np.zeros_like(phi)
for i in range(phi.shape[0]):
    potential[i] = mode.get_potential(phi[i]) / (constants.Na * constants.E_h)
    #print(potential[i])
freq = mode.get_frequency()  # in cm-1
#print(freq)
print('1/Q: %.2f' % (1 / Q))
print('V/RT: %.1f' % (barrier / ((constants.R * T) / 1000)))
k = (freq * (2 * np.pi * constants.c * 100))**2  # in 1/s^2
#print('M: ',inertia)
#print('K: ',k)
示例#6
0
    def setUp(self):
        """
        A method that is called prior to each unit test in this class.
        """
        ethylene = Species(
            label='C2H4',
            conformer=Conformer(
                E0=(44.7127, 'kJ/mol'),
                modes=[
                    IdealGasTranslation(mass=(28.0313, 'amu'), ),
                    NonlinearRotor(
                        inertia=(
                            [3.41526, 16.6498, 20.065],
                            'amu*angstrom^2',
                        ),
                        symmetry=4,
                    ),
                    HarmonicOscillator(frequencies=(
                        [
                            828.397, 970.652, 977.223, 1052.93, 1233.55,
                            1367.56, 1465.09, 1672.25, 3098.46, 3111.7,
                            3165.79, 3193.54
                        ],
                        'cm^-1',
                    ), ),
                ],
                spinMultiplicity=1,
                opticalIsomers=1,
            ),
        )

        hydrogen = Species(
            label='H',
            conformer=Conformer(
                E0=(211.794, 'kJ/mol'),
                modes=[
                    IdealGasTranslation(mass=(1.00783, 'amu'), ),
                ],
                spinMultiplicity=2,
                opticalIsomers=1,
            ),
        )

        ethyl = Species(
            label='C2H5',
            conformer=Conformer(
                E0=(111.603, 'kJ/mol'),
                modes=[
                    IdealGasTranslation(mass=(29.0391, 'amu'), ),
                    NonlinearRotor(
                        inertia=(
                            [4.8709, 22.2353, 23.9925],
                            'amu*angstrom^2',
                        ),
                        symmetry=1,
                    ),
                    HarmonicOscillator(frequencies=(
                        [
                            482.224, 791.876, 974.355, 1051.48, 1183.21,
                            1361.36, 1448.65, 1455.07, 1465.48, 2688.22,
                            2954.51, 3033.39, 3101.54, 3204.73
                        ],
                        'cm^-1',
                    ), ),
                    HinderedRotor(
                        inertia=(1.11481, 'amu*angstrom^2'),
                        symmetry=6,
                        barrier=(0.244029, 'kJ/mol'),
                        semiclassical=None,
                    ),
                ],
                spinMultiplicity=2,
                opticalIsomers=1,
            ),
        )

        TS = TransitionState(
            label='TS',
            conformer=Conformer(
                E0=(266.694, 'kJ/mol'),
                modes=[
                    IdealGasTranslation(mass=(29.0391, 'amu'), ),
                    NonlinearRotor(
                        inertia=(
                            [6.78512, 22.1437, 22.2114],
                            'amu*angstrom^2',
                        ),
                        symmetry=1,
                    ),
                    HarmonicOscillator(frequencies=(
                        [
                            412.75, 415.206, 821.495, 924.44, 982.714, 1024.16,
                            1224.21, 1326.36, 1455.06, 1600.35, 3101.46,
                            3110.55, 3175.34, 3201.88
                        ],
                        'cm^-1',
                    ), ),
                ],
                spinMultiplicity=2,
                opticalIsomers=1,
            ),
            frequency=(-750.232, 'cm^-1'),
        )

        self.reaction = Reaction(
            reactants=[hydrogen, ethylene],
            products=[ethyl],
            kinetics=Arrhenius(
                A=(501366000.0, 'cm^3/(mol*s)'),
                n=1.637,
                Ea=(4.32508, 'kJ/mol'),
                T0=(1, 'K'),
                Tmin=(300, 'K'),
                Tmax=(2500, 'K'),
            ),
            transitionState=TS,
        )

        # CC(=O)O[O]
        acetylperoxy = Species(
            label='acetylperoxy',
            thermo=Wilhoit(Cp0=(4.0 * constants.R, "J/(mol*K)"),
                           CpInf=(21.0 * constants.R, "J/(mol*K)"),
                           a0=-3.95,
                           a1=9.26,
                           a2=-15.6,
                           a3=8.55,
                           B=(500.0, "K"),
                           H0=(-6.151e+04, "J/mol"),
                           S0=(-790.2, "J/(mol*K)")),
        )

        # C[C]=O
        acetyl = Species(
            label='acetyl',
            thermo=Wilhoit(Cp0=(4.0 * constants.R, "J/(mol*K)"),
                           CpInf=(15.5 * constants.R, "J/(mol*K)"),
                           a0=0.2541,
                           a1=-0.4712,
                           a2=-4.434,
                           a3=2.25,
                           B=(500.0, "K"),
                           H0=(-1.439e+05, "J/mol"),
                           S0=(-524.6, "J/(mol*K)")),
        )

        # [O][O]
        oxygen = Species(
            label='oxygen',
            thermo=Wilhoit(Cp0=(3.5 * constants.R, "J/(mol*K)"),
                           CpInf=(4.5 * constants.R, "J/(mol*K)"),
                           a0=-0.9324,
                           a1=26.18,
                           a2=-70.47,
                           a3=44.12,
                           B=(500.0, "K"),
                           H0=(1.453e+04, "J/mol"),
                           S0=(-12.19, "J/(mol*K)")),
        )

        self.reaction2 = Reaction(
            reactants=[acetyl, oxygen],
            products=[acetylperoxy],
            kinetics=Arrhenius(
                A=(2.65e12, 'cm^3/(mol*s)'),
                n=0.0,
                Ea=(0.0, 'kJ/mol'),
                T0=(1, 'K'),
                Tmin=(300, 'K'),
                Tmax=(2000, 'K'),
            ),
        )