def rmpyl_icaps14(): """ Example from (Santana & Williams, ICAPS14). """ prog = RMPyL() prog *= prog.decide( {'name':'transport-choice','domain':['Bike','Car','Stay'], 'utility':[100,70,0]}, prog.observe( {'name':'slip','domain':[True,False], 'ctype':'probabilistic','probability':[0.051,1.0-0.051]}, prog.sequence(Episode(action='(ride-bike)', duration={'ctype':'controllable','lb':15,'ub':25}), Episode(action='(change)', duration={'ctype':'controllable','lb':20,'ub':30})), Episode(action='(ride-bike)',duration={'ctype':'controllable','lb':15,'ub':25})), prog.observe( {'name':'accident','domain':[True,False], 'ctype':'probabilistic','probability':[0.013,1.0-0.013]}, prog.sequence(Episode(action='(tow-vehicle)', duration={'ctype':'controllable','lb':30,'ub':90}), Episode(action='(cab-ride)', duration={'ctype':'controllable','lb':10,'ub':20})), Episode(action='(drive)',duration={'ctype':'controllable','lb':10,'ub':20})), Episode(action='(stay)')) prog.add_overall_temporal_constraint(ctype='controllable',lb=0.0,ub=30.0) return prog
def rmpyl_low_risk(): prog = RMPyL() prog *= Episode(action='(cab-ride)',duration={'ctype':'uncontrollable_probabilistic', 'distribution':{'type':'uniform', 'lb':5.0,'ub':10.0}}) prog.add_overall_temporal_constraint(ctype='controllable',lb=5.0,ub=9.9) return prog
def rmpyl_observation_risk(): prog = RMPyL() prog *= prog.observe( { 'name': 'travel', 'ctype': 'probabilistic', 'domain': ['Short', 'Long'], 'probability': [0.7, 0.3] }, Episode(action='(cab-ride-long)', duration={ 'ctype': 'uncontrollable_probabilistic', 'distribution': { 'type': 'uniform', 'lb': 5.0, 'ub': 11.0 } }), Episode(action='(cab-ride-short)', duration={ 'ctype': 'uncontrollable_probabilistic', 'distribution': { 'type': 'uniform', 'lb': 5.0, 'ub': 10.0 } })) prog.add_overall_temporal_constraint(ctype='controllable', lb=0.0, ub=10.0) return prog
def nominal_case(blocks, time_window=-1, dur_dict=None): """ Nominal case, where the robot observes what the human has already completed, and acts accordingly """ agent = 'Baxter' manip = 'BaxterRight' prog = RMPyL(name='run()') prog *= prog.sequence( say('Should I start?'), prog.observe( { 'name': 'ask-human', 'ctype': 'probabilistic', 'domain': ['YES', 'NO'], 'probability': [0.9, 0.1] }, observe_decide_act(prog, blocks, manip, agent, dur_dict), say('All done!'))) if time_window > 0.0: prog.add_overall_temporal_constraint(ctype='controllable', lb=0.0, ub=time_window) return prog
def rmpyl_infeasible(): prog = RMPyL() prog *= Episode(action='(cab-ride)', duration={ 'ctype': 'controllable', 'lb': 10, 'ub': 20 }) prog.add_overall_temporal_constraint(ctype='controllable', lb=0.0, ub=5.0) return prog
def rmpyl_observation_risk(): prog = RMPyL() prog *= prog.observe( {'name':'travel','ctype':'probabilistic', 'domain':['Short','Long'],'probability':[0.7,0.3]}, Episode(action='(cab-ride-long)',duration={'ctype':'uncontrollable_probabilistic', 'distribution':{'type':'uniform', 'lb':5.0,'ub':11.0}}), Episode(action='(cab-ride-short)',duration={'ctype':'uncontrollable_probabilistic', 'distribution':{'type':'uniform', 'lb':5.0,'ub':10.0}})) prog.add_overall_temporal_constraint(ctype='controllable',lb=0.0,ub=10.0) return prog
def rmpyl_parallel_and_choice_user_defined_tcs(hello,uav): """Simple RMPyL example with parallel execution of actions on different choice branches with user-defined constraints.""" prog = RMPyL() #Choice using the previous example as a subroutine to generate partial progs prog *= prog.decide({'name':'Choose-branch','domain':['1','2'],'utility':[1,2]}, rmpyl_parallel_user_defined_tcs(hello,uav), rmpyl_parallel_user_defined_tcs(hello,uav)) prog.add_overall_temporal_constraint(ctype='controllable',lb=0.0,ub=70.0) return prog
def rmpyl_low_risk(): prog = RMPyL() prog *= Episode(action='(cab-ride)', duration={ 'ctype': 'uncontrollable_probabilistic', 'distribution': { 'type': 'uniform', 'lb': 5.0, 'ub': 10.0 } }) prog.add_overall_temporal_constraint(ctype='controllable', lb=5.0, ub=9.9) return prog
def rmpyl_uav(): hello = UAV('hello') uav = UAV('uav') prog = RMPyL() # prog *= hello.fly() prog.plan = prog.sequence( hello.scan(), hello.fly(), uav.fly(), uav.scan(), prog.decide( { 'name': 'UAV-choice', 'domain': ['Hello', 'UAV'], 'utility': [5, 7] }, hello.fly(), uav.fly())) prog.add_overall_temporal_constraint(ctype='controllable', lb=0.0, ub=18.0) return prog
def rmpyl_uav(): hello = UAV('hello') uav = UAV('uav') prog = RMPyL() # prog *= hello.fly() prog.plan = prog.sequence( hello.scan(), hello.fly(), uav.fly(), uav.scan(), prog.decide({'name':'UAV-choice','domain':['Hello','UAV'], 'utility':[5,7]}, hello.fly(), uav.fly())) prog.add_overall_temporal_constraint(ctype='controllable',lb=0.0,ub=18.0) return prog
def rmpyl_original_verbose(hello,uav): """ Implementation of the original RMPL using a more verbose syntax and adding a chance constraint. ##### Original RMPL class UAV { value on; value off; primitive method fly() [3,10]; primitive method scan() [1,10]; } class Main { UAV helo; UAV uav; method run () { [0, 18] sequence { parallel { sequence { helo.scan(); helo.fly(); } sequence { uav.fly(); uav.scan(); } } choose { with reward: 5 {helo.fly();} with reward: 7 {uav.fly();} } } } } """ prog = RMPyL() prog.plan = prog.sequence( prog.parallel( prog.sequence( hello.scan(), hello.fly()), prog.sequence( uav.fly(), uav.scan())), prog.decide({'name':'UAV-choice','domain':['Hello','UAV'],'utility':[5,7]}, hello.fly(), uav.fly())) overall_tc = prog.add_overall_temporal_constraint(ctype='controllable',lb=0.0,ub=18.0) cc_time = ChanceConstraint(constraint_scope=[overall_tc],risk=0.1) prog.add_chance_constraint(cc_time) return prog
def rmpyl_choice_risk(): prog = RMPyL() prog *= prog.decide( { 'name': 'transport-choice', 'domain': ['Bike', 'Car', 'Stay'], 'utility': [100, 70, 0] }, prog.observe( { 'name': 'travel', 'ctype': 'probabilistic', 'domain': ['Short', 'Long'], 'probability': [0.7, 0.3] }, Episode(action='(cab-ride-long)', duration={ 'ctype': 'uncontrollable_probabilistic', 'distribution': { 'type': 'uniform', 'lb': 5.0, 'ub': 11.0 } }), Episode(action='(cab-ride-short)', duration={ 'ctype': 'uncontrollable_probabilistic', 'distribution': { 'type': 'uniform', 'lb': 5.0, 'ub': 10.0 } })), Episode(action='(drive-car)', duration={ 'ctype': 'controllable', 'lb': 6.0, 'ub': 8.0 }), Episode(action='(stay)')) prog.add_overall_temporal_constraint(ctype='controllable', lb=0.0, ub=10.0) return prog
def rmpyl_parallel_user_defined_tcs(hello,uav): """Simple RMPyL example with parallel execution of actions with user-defined constraints.""" prog = RMPyL() hello_flight = hello.fly() uav_flight = uav.fly() uav_scan = uav.scan() prog *= hello_flight+(uav_scan*uav_flight) tc1 = TemporalConstraint(start=uav_scan.end,end=hello_flight.start, ctype='controllable',lb=2.0,ub=3.0) tc2 = TemporalConstraint(start=hello_flight.end,end=uav_flight.start, ctype='controllable',lb=3.0,ub=4.0) for tc in [tc1,tc2]: prog.add_temporal_constraint(tc) prog.add_overall_temporal_constraint(ctype='controllable',lb=0.0,ub=50.0) return prog
def rmpyl_choice_risk(): prog = RMPyL() prog *= prog.decide( {'name':'transport-choice','domain':['Bike','Car','Stay'], 'utility':[100,70,0]}, prog.observe( {'name':'travel','ctype':'probabilistic', 'domain':['Short','Long'],'probability':[0.7,0.3]}, Episode(action='(cab-ride-long)',duration={'ctype':'uncontrollable_probabilistic', 'distribution':{'type':'uniform', 'lb':5.0,'ub':11.0}}), Episode(action='(cab-ride-short)',duration={'ctype':'uncontrollable_probabilistic', 'distribution':{'type':'uniform', 'lb':5.0,'ub':10.0}})), Episode(action='(drive-car)', duration={'ctype':'controllable','lb':6.0,'ub':8.0}), Episode(action='(stay)')) prog.add_overall_temporal_constraint(ctype='controllable',lb=0.0,ub=10.0) return prog
def nominal_case(blocks,time_window=-1,dur_dict=None): """ Nominal case, where the robot observes what the human has already completed, and acts accordingly """ agent='Baxter' manip='BaxterRight' prog = RMPyL(name='run()') prog *= prog.sequence(say('Should I start?'), prog.observe({'name':'ask-human', 'ctype':'probabilistic', 'domain':['YES','NO'], 'probability':[0.9,0.1]}, observe_decide_act(prog,blocks,manip,agent,dur_dict), say('All done!'))) if time_window>0.0: prog.add_overall_temporal_constraint(ctype='controllable',lb=0.0,ub=time_window) return prog
def rmpyl_breakfast(): """ Example from (Levine & Williams, ICAPS14). """ #Actions that Alice performs get_mug_ep = Episode(action='(get alice mug)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) get_glass_ep = Episode(action='(get alice glass)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) make_cofee_ep = Episode(action='(make-coffee alice)', duration={ 'ctype': 'controllable', 'lb': 3.0, 'ub': 5.0 }) pour_cofee_ep = Episode(action='(pour-coffee alice mug)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) pour_juice_glass = Episode(action='(pour-juice alice glass)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) get_bagel_ep = Episode(action='(get alice bagel)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) get_cereal_ep = Episode(action='(get alice cereal)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) toast_bagel_ep = Episode(action='(toast alice bagel)', duration={ 'ctype': 'controllable', 'lb': 3.0, 'ub': 5.0 }) add_cheese_bagel_ep = Episode(action='(add-cheese alice bagel)', duration={ 'ctype': 'controllable', 'lb': 1.0, 'ub': 2.0 }) mix_cereal_ep = Episode(action='(mix-cereal alice milk)', duration={ 'ctype': 'controllable', 'lb': 1.0, 'ub': 2.0 }) #Actions that the robot performs get_grounds_ep = Episode(action='(get grounds robot)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) get_juice_ep = Episode(action='(get juice robot)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) get_milk_ep = Episode(action='(get milk robot)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) get_cheese_ep = Episode(action='(get cheese robot)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) prog = RMPyL() prog *= prog.sequence( prog.parallel( prog.observe( { 'name': 'observe-utensil', 'domain': ['Mug', 'Glass'], 'ctype': 'uncontrollable' }, get_mug_ep, get_glass_ep, id='observe-utensil-ep'), prog.decide( { 'name': 'choose-beverage-ingredient', 'domain': ['Grounds', 'Juice'], 'utility': [0, 0] }, get_grounds_ep, get_juice_ep, id='choose-beverage-ingredient-ep')), prog.observe( { 'name': 'observe-alice-drink', 'domain': ['Coffee', 'Juice'], 'ctype': 'uncontrollable' }, prog.sequence(make_cofee_ep, pour_cofee_ep), pour_juice_glass, id='observe-alice-drink-ep'), prog.parallel(prog.observe( { 'name': 'observe-food', 'domain': ['Bagel', 'Cereal'], 'ctype': 'uncontrollable' }, get_bagel_ep, get_cereal_ep, id='observe-food-ep'), prog.decide( { 'name': 'choose-food-ingredient', 'domain': ['Milk', 'Cheese'], 'utility': [0, 0] }, get_milk_ep, get_cheese_ep, id='choose-food-ingredient-ep'), id='parallel-food-ep'), prog.observe( { 'name': 'observe-alice-food', 'domain': ['Bagel', 'Cereal'], 'ctype': 'uncontrollable' }, prog.sequence(toast_bagel_ep, add_cheese_bagel_ep), mix_cereal_ep), id='breakfast-sequence') extra_tcs = [ TemporalConstraint( start=prog.episode_by_id('breakfast-sequence').start, end=prog.episode_by_id('observe-utensil-ep').start, ctype='controllable', lb=0.0, ub=0.0), TemporalConstraint( start=prog.episode_by_id('breakfast-sequence').start, end=prog.episode_by_id('choose-beverage-ingredient-ep').start, ctype='controllable', lb=0.2, ub=0.3), TemporalConstraint(start=prog.episode_by_id('parallel-food-ep').start, end=prog.episode_by_id('observe-food-ep').start, ctype='controllable', lb=0.0, ub=0.0), TemporalConstraint( start=prog.episode_by_id('parallel-food-ep').start, end=prog.episode_by_id('choose-food-ingredient-ep').start, ctype='controllable', lb=0.2, ub=0.3) ] for tc in extra_tcs: prog.add_temporal_constraint(tc) prog.add_overall_temporal_constraint(ctype='controllable', lb=0.0, ub=7.0) prog.simplify_temporal_constraints() return prog
def rmpyl_breakfast(): """ Example from (Levine & Williams, ICAPS14). """ #Actions that Alice performs get_mug_ep = Episode(action='(get alice mug)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) get_glass_ep = Episode(action='(get alice glass)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) make_cofee_ep = Episode(action='(make-coffee alice)',duration={'ctype':'controllable','lb':3.0,'ub':5.0}) pour_cofee_ep = Episode(action='(pour-coffee alice mug)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) pour_juice_glass = Episode(action='(pour-juice alice glass)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) get_bagel_ep = Episode(action='(get alice bagel)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) get_cereal_ep = Episode(action='(get alice cereal)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) toast_bagel_ep = Episode(action='(toast alice bagel)',duration={'ctype':'controllable','lb':3.0,'ub':5.0}) add_cheese_bagel_ep = Episode(action='(add-cheese alice bagel)',duration={'ctype':'controllable','lb':1.0,'ub':2.0}) mix_cereal_ep = Episode(action='(mix-cereal alice milk)',duration={'ctype':'controllable','lb':1.0,'ub':2.0}) #Actions that the robot performs get_grounds_ep = Episode(action='(get grounds robot)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) get_juice_ep = Episode(action='(get juice robot)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) get_milk_ep = Episode(action='(get milk robot)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) get_cheese_ep = Episode(action='(get cheese robot)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) prog = RMPyL() prog *= prog.sequence( prog.parallel( prog.observe( {'name':'observe-utensil','domain':['Mug','Glass'],'ctype':'uncontrollable'}, get_mug_ep, get_glass_ep, id='observe-utensil-ep'), prog.decide( {'name':'choose-beverage-ingredient','domain':['Grounds','Juice'],'utility':[0,0]}, get_grounds_ep, get_juice_ep, id='choose-beverage-ingredient-ep')), prog.observe( {'name':'observe-alice-drink','domain':['Coffee','Juice'],'ctype':'uncontrollable'}, prog.sequence(make_cofee_ep,pour_cofee_ep), pour_juice_glass, id='observe-alice-drink-ep'), prog.parallel( prog.observe( {'name':'observe-food','domain':['Bagel','Cereal'],'ctype':'uncontrollable'}, get_bagel_ep, get_cereal_ep, id='observe-food-ep'), prog.decide( {'name':'choose-food-ingredient','domain':['Milk','Cheese'],'utility':[0,0]}, get_milk_ep, get_cheese_ep, id='choose-food-ingredient-ep'), id='parallel-food-ep'), prog.observe( {'name':'observe-alice-food','domain':['Bagel','Cereal'],'ctype':'uncontrollable'}, prog.sequence(toast_bagel_ep,add_cheese_bagel_ep), mix_cereal_ep), id='breakfast-sequence') extra_tcs = [TemporalConstraint(start=prog.episode_by_id('breakfast-sequence').start, end=prog.episode_by_id('observe-utensil-ep').start, ctype='controllable',lb=0.0,ub=0.0), TemporalConstraint(start=prog.episode_by_id('breakfast-sequence').start, end=prog.episode_by_id('choose-beverage-ingredient-ep').start, ctype='controllable',lb=0.2,ub=0.3), TemporalConstraint(start=prog.episode_by_id('parallel-food-ep').start, end=prog.episode_by_id('observe-food-ep').start, ctype='controllable',lb=0.0,ub=0.0), TemporalConstraint(start=prog.episode_by_id('parallel-food-ep').start, end=prog.episode_by_id('choose-food-ingredient-ep').start, ctype='controllable',lb=0.2,ub=0.3)] for tc in extra_tcs: prog.add_temporal_constraint(tc) prog.add_overall_temporal_constraint(ctype='controllable',lb=0.0,ub=7.0) prog.simplify_temporal_constraints() return prog
'ctype':'uncontrollable','domain':['SUCCESS','FAIL']}, halt_func(), try_try_again(prog,action_func, halt_func,loop_utility,stop_utility, repetitions-1))), halt_func()) prog = RMPyL() rob = Robot(name='ResilientRobot') repetitions = int(sys.argv[1]) if len(sys.argv)==2 else 3 prog*= try_try_again(prog,rob.do_action,rob.stop,loop_utility=1, stop_utility=0,repetitions=repetitions) prog.add_overall_temporal_constraint(ctype='controllable',lb=0.0,ub=10.0) print('\n***** Start event\n') print(prog.first_event) print('\n***** Last event\n') print(prog.last_event) print('\n***** Primitive episodes\n') for i,p in enumerate(prog.primitive_episodes): print('%d: %s\n'%(i+1,str(p))) print('\n***** Events\n') for i,e in enumerate(prog.events): print('%d: %s'%(i+1,str(e)))
def rmpyl_infeasible(): prog = RMPyL() prog *= Episode(action='(cab-ride)',duration={'ctype':'controllable','lb':10,'ub':20}) prog.add_overall_temporal_constraint(ctype='controllable',lb=0.0,ub=5.0) return prog
if len(sat_plans) > 0: plan = sat_plans[0] print('\n##### Plan found!\n') for t, action in enumerate(plan): print('%d: %s' % (t, action)) prog = RMPyL(name='run()') prog.plan = prog.sequence(*[ Episode(start=Event(name='start-of-' + op), end=Event(name='end-of-' + op), action=op, duration=rss_duration_func(op)) for op in plan ]) prog.add_overall_temporal_constraint(ctype='controllable', lb=0.0, ub=2000.0) prog.to_ptpn(filename='rss_pysat_before_stnu_reform.tpn') paris = PARIS() risk_bound, sc_sched = paris.stnu_reformulation(prog, makespan=True, cc=0.001) if risk_bound != None: risk_bound = min(risk_bound, 1.0) print( '\nSuccessfully performed STNU reformulation with scheduling risk %f %%!' % (risk_bound * 100.0)) prog.to_ptpn(filename='rss_pysat_after_stnu_reform.tpn') print('\nThis is the schedule:')
def rmpyl_icaps14(): """ Example from (Santana & Williams, ICAPS14). """ prog = RMPyL() prog *= prog.decide( { 'name': 'transport-choice', 'domain': ['Bike', 'Car', 'Stay'], 'utility': [100, 70, 0] }, prog.observe( { 'name': 'slip', 'domain': [True, False], 'ctype': 'probabilistic', 'probability': [0.051, 1.0 - 0.051] }, prog.sequence( Episode(action='(ride-bike)', duration={ 'ctype': 'controllable', 'lb': 15, 'ub': 25 }), Episode(action='(change)', duration={ 'ctype': 'controllable', 'lb': 20, 'ub': 30 })), Episode(action='(ride-bike)', duration={ 'ctype': 'controllable', 'lb': 15, 'ub': 25 })), prog.observe( { 'name': 'accident', 'domain': [True, False], 'ctype': 'probabilistic', 'probability': [0.013, 1.0 - 0.013] }, prog.sequence( Episode(action='(tow-vehicle)', duration={ 'ctype': 'controllable', 'lb': 30, 'ub': 90 }), Episode(action='(cab-ride)', duration={ 'ctype': 'controllable', 'lb': 10, 'ub': 20 })), Episode(action='(drive)', duration={ 'ctype': 'controllable', 'lb': 10, 'ub': 20 })), Episode(action='(stay)')) prog.add_overall_temporal_constraint(ctype='controllable', lb=0.0, ub=30.0) return prog