def rmpyl_episode_ids(hello,uav): """Example of how episode ID's can be used to retrieve them.""" prog = RMPyL() first_uav_seq = prog.sequence(uav.scan(),uav.fly(),id='uav-1-seq') second_uav_seq = prog.sequence(uav.scan(),uav.fly(),id='uav-2-seq') first_hello_seq = prog.sequence(hello.scan(),hello.fly(),id='hello-1-seq') second_hello_seq = prog.sequence(hello.scan(),hello.fly(),id='hello-2-seq') prog *= prog.parallel(prog.sequence(first_uav_seq,second_uav_seq,id='uav-seqs'), prog.sequence(first_hello_seq,second_hello_seq,id='hello-seqs'),id='par-seqs') #This could have been accomplished much more easily by using the sequence #variables directly, but I wanted to show how episodes can be retrieved by #ID. tc1 = TemporalConstraint(start=prog.episode_by_id('uav-1-seq').end, end=prog.episode_by_id('hello-2-seq').start, ctype='controllable',lb=2.0,ub=3.0) tc2 = TemporalConstraint(start=prog.episode_by_id('hello-1-seq').end, end=prog.episode_by_id('uav-2-seq').start, ctype='controllable',lb=0.5,ub=1.0) prog.add_temporal_constraint(tc1) prog.add_temporal_constraint(tc2) return prog
def rmpyl_original_verbose(hello,uav): """ Implementation of the original RMPL using a more verbose syntax and adding a chance constraint. ##### Original RMPL class UAV { value on; value off; primitive method fly() [3,10]; primitive method scan() [1,10]; } class Main { UAV helo; UAV uav; method run () { [0, 18] sequence { parallel { sequence { helo.scan(); helo.fly(); } sequence { uav.fly(); uav.scan(); } } choose { with reward: 5 {helo.fly();} with reward: 7 {uav.fly();} } } } } """ prog = RMPyL() prog.plan = prog.sequence( prog.parallel( prog.sequence( hello.scan(), hello.fly()), prog.sequence( uav.fly(), uav.scan())), prog.decide({'name':'UAV-choice','domain':['Hello','UAV'],'utility':[5,7]}, hello.fly(), uav.fly())) overall_tc = prog.add_overall_temporal_constraint(ctype='controllable',lb=0.0,ub=18.0) cc_time = ChanceConstraint(constraint_scope=[overall_tc],risk=0.1) prog.add_chance_constraint(cc_time) return prog
def rmpyl_parallel_choices(hello,uav): """Simple RMPyL example with parallel execution of choices.""" uav2 = UAV(name='uav2') prog = RMPyL() prog *= prog.parallel( prog.observe({'name':'HELLO-OBS','domain':['FLY','SCAN','CRASH'], 'ctype':'probabilistic','probability':[0.50,0.49,0.01]}, hello.fly(),hello.scan(),hello.crash()), prog.observe({'name':'UAV-OBS','domain':['FLY','SCAN','CRASH'], 'ctype':'probabilistic','probability':[0.50,0.49,0.01]}, uav.fly(),uav.scan(),uav.crash()))*uav2.fly() return prog
def rmpyl_parallel_uav(): hello = UAV('hello') uav = UAV('uav') prog = RMPyL() prog.plan = prog.parallel( prog.sequence( prog.decide( { 'name': 'hello-action', 'domain': ['Fly', 'Scan'], 'utility': [0, 1] }, hello.fly(), hello.scan()), prog.decide( { 'name': 'hello-action', 'domain': ['Fly', 'Scan'], 'utility': [0, 1] }, hello.fly(), hello.scan()), prog.decide( { 'name': 'hello-action', 'domain': ['Fly', 'Scan'], 'utility': [0, 1] }, hello.fly(), hello.scan())), prog.sequence( prog.decide( { 'name': 'uav-action', 'domain': ['Fly', 'Scan'], 'utility': [0, 1] }, uav.fly(), uav.scan()), prog.decide( { 'name': 'uav-action', 'domain': ['Fly', 'Scan'], 'utility': [0, 1] }, uav.fly(), uav.scan()), prog.decide( { 'name': 'uav-action', 'domain': ['Fly', 'Scan'], 'utility': [0, 1] }, uav.fly(), uav.scan()))) return prog
def rmpyl_parallel_uav(): hello = UAV('hello') uav = UAV('uav') prog = RMPyL() prog.plan = prog.parallel( prog.sequence( prog.decide({'name':'hello-action','domain':['Fly','Scan'], 'utility':[0,1]}, hello.fly(), hello.scan()), prog.decide({'name':'hello-action','domain':['Fly','Scan'], 'utility':[0,1]}, hello.fly(), hello.scan()), prog.decide({'name':'hello-action','domain':['Fly','Scan'], 'utility':[0,1]}, hello.fly(), hello.scan()) ), prog.sequence( prog.decide({'name':'uav-action','domain':['Fly','Scan'], 'utility':[0,1]}, uav.fly(), uav.scan()), prog.decide({'name':'uav-action','domain':['Fly','Scan'], 'utility':[0,1]}, uav.fly(), uav.scan()), prog.decide({'name':'uav-action','domain':['Fly','Scan'], 'utility':[0,1]}, uav.fly(), uav.scan()) )) return prog
for op_name,op_param_dict in time_windows['time_windows'].items(): for arg_set,window_dict in op_param_dict.items(): for ev_type,time_bound in window_dict.items(): orb_ep_id='%s_event_%s-%s'%(ev_type,op_name,'-'.join(arg_set)) activation_episodes.append(Episode(id=orb_ep_id, action='(%s)'%(orb_ep_id.replace('-',' ')), duration={'ctype':'controllable','lb':0.005,'ub':0.1})) activation_tcs.append(TemporalConstraint(start=global_start, end=activation_episodes[-1].start, ctype='controllable', lb=float(time_bound), ub=float(time_bound))) global_prog = RMPyL(name='run()') global_prog *= global_prog.parallel(prog.plan,*activation_episodes,start=global_start) activation_tcs.append(TemporalConstraint(start=global_start,end=prog.first_event, ctype='controllable',lb=0.0,ub=0.005)) for tc in activation_tcs: global_prog.add_temporal_constraint(tc) # rmpyl_policy.to_ptpn(filename=output_file) #ipdb.set_trace() global_prog.to_ptpn(filename=output_file+'_test') paris = PARIS() # risk_bound,sc_schedule = paris.stnu_reformulation(rmpyl_policy,makespan=True,cc=0.001)
def rmpyl_breakfast(): """ Example from (Levine & Williams, ICAPS14). """ #Actions that Alice performs get_mug_ep = Episode(action='(get alice mug)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) get_glass_ep = Episode(action='(get alice glass)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) make_cofee_ep = Episode(action='(make-coffee alice)', duration={ 'ctype': 'controllable', 'lb': 3.0, 'ub': 5.0 }) pour_cofee_ep = Episode(action='(pour-coffee alice mug)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) pour_juice_glass = Episode(action='(pour-juice alice glass)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) get_bagel_ep = Episode(action='(get alice bagel)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) get_cereal_ep = Episode(action='(get alice cereal)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) toast_bagel_ep = Episode(action='(toast alice bagel)', duration={ 'ctype': 'controllable', 'lb': 3.0, 'ub': 5.0 }) add_cheese_bagel_ep = Episode(action='(add-cheese alice bagel)', duration={ 'ctype': 'controllable', 'lb': 1.0, 'ub': 2.0 }) mix_cereal_ep = Episode(action='(mix-cereal alice milk)', duration={ 'ctype': 'controllable', 'lb': 1.0, 'ub': 2.0 }) #Actions that the robot performs get_grounds_ep = Episode(action='(get grounds robot)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) get_juice_ep = Episode(action='(get juice robot)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) get_milk_ep = Episode(action='(get milk robot)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) get_cheese_ep = Episode(action='(get cheese robot)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) prog = RMPyL() prog *= prog.sequence( prog.parallel( prog.observe( { 'name': 'observe-utensil', 'domain': ['Mug', 'Glass'], 'ctype': 'uncontrollable' }, get_mug_ep, get_glass_ep, id='observe-utensil-ep'), prog.decide( { 'name': 'choose-beverage-ingredient', 'domain': ['Grounds', 'Juice'], 'utility': [0, 0] }, get_grounds_ep, get_juice_ep, id='choose-beverage-ingredient-ep')), prog.observe( { 'name': 'observe-alice-drink', 'domain': ['Coffee', 'Juice'], 'ctype': 'uncontrollable' }, prog.sequence(make_cofee_ep, pour_cofee_ep), pour_juice_glass, id='observe-alice-drink-ep'), prog.parallel(prog.observe( { 'name': 'observe-food', 'domain': ['Bagel', 'Cereal'], 'ctype': 'uncontrollable' }, get_bagel_ep, get_cereal_ep, id='observe-food-ep'), prog.decide( { 'name': 'choose-food-ingredient', 'domain': ['Milk', 'Cheese'], 'utility': [0, 0] }, get_milk_ep, get_cheese_ep, id='choose-food-ingredient-ep'), id='parallel-food-ep'), prog.observe( { 'name': 'observe-alice-food', 'domain': ['Bagel', 'Cereal'], 'ctype': 'uncontrollable' }, prog.sequence(toast_bagel_ep, add_cheese_bagel_ep), mix_cereal_ep), id='breakfast-sequence') extra_tcs = [ TemporalConstraint( start=prog.episode_by_id('breakfast-sequence').start, end=prog.episode_by_id('observe-utensil-ep').start, ctype='controllable', lb=0.0, ub=0.0), TemporalConstraint( start=prog.episode_by_id('breakfast-sequence').start, end=prog.episode_by_id('choose-beverage-ingredient-ep').start, ctype='controllable', lb=0.2, ub=0.3), TemporalConstraint(start=prog.episode_by_id('parallel-food-ep').start, end=prog.episode_by_id('observe-food-ep').start, ctype='controllable', lb=0.0, ub=0.0), TemporalConstraint( start=prog.episode_by_id('parallel-food-ep').start, end=prog.episode_by_id('choose-food-ingredient-ep').start, ctype='controllable', lb=0.2, ub=0.3) ] for tc in extra_tcs: prog.add_temporal_constraint(tc) prog.add_overall_temporal_constraint(ctype='controllable', lb=0.0, ub=7.0) prog.simplify_temporal_constraints() return prog
def rmpyl_breakfast(): """ Example from (Levine & Williams, ICAPS14). """ #Actions that Alice performs get_mug_ep = Episode(action='(get alice mug)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) get_glass_ep = Episode(action='(get alice glass)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) make_cofee_ep = Episode(action='(make-coffee alice)',duration={'ctype':'controllable','lb':3.0,'ub':5.0}) pour_cofee_ep = Episode(action='(pour-coffee alice mug)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) pour_juice_glass = Episode(action='(pour-juice alice glass)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) get_bagel_ep = Episode(action='(get alice bagel)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) get_cereal_ep = Episode(action='(get alice cereal)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) toast_bagel_ep = Episode(action='(toast alice bagel)',duration={'ctype':'controllable','lb':3.0,'ub':5.0}) add_cheese_bagel_ep = Episode(action='(add-cheese alice bagel)',duration={'ctype':'controllable','lb':1.0,'ub':2.0}) mix_cereal_ep = Episode(action='(mix-cereal alice milk)',duration={'ctype':'controllable','lb':1.0,'ub':2.0}) #Actions that the robot performs get_grounds_ep = Episode(action='(get grounds robot)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) get_juice_ep = Episode(action='(get juice robot)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) get_milk_ep = Episode(action='(get milk robot)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) get_cheese_ep = Episode(action='(get cheese robot)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) prog = RMPyL() prog *= prog.sequence( prog.parallel( prog.observe( {'name':'observe-utensil','domain':['Mug','Glass'],'ctype':'uncontrollable'}, get_mug_ep, get_glass_ep, id='observe-utensil-ep'), prog.decide( {'name':'choose-beverage-ingredient','domain':['Grounds','Juice'],'utility':[0,0]}, get_grounds_ep, get_juice_ep, id='choose-beverage-ingredient-ep')), prog.observe( {'name':'observe-alice-drink','domain':['Coffee','Juice'],'ctype':'uncontrollable'}, prog.sequence(make_cofee_ep,pour_cofee_ep), pour_juice_glass, id='observe-alice-drink-ep'), prog.parallel( prog.observe( {'name':'observe-food','domain':['Bagel','Cereal'],'ctype':'uncontrollable'}, get_bagel_ep, get_cereal_ep, id='observe-food-ep'), prog.decide( {'name':'choose-food-ingredient','domain':['Milk','Cheese'],'utility':[0,0]}, get_milk_ep, get_cheese_ep, id='choose-food-ingredient-ep'), id='parallel-food-ep'), prog.observe( {'name':'observe-alice-food','domain':['Bagel','Cereal'],'ctype':'uncontrollable'}, prog.sequence(toast_bagel_ep,add_cheese_bagel_ep), mix_cereal_ep), id='breakfast-sequence') extra_tcs = [TemporalConstraint(start=prog.episode_by_id('breakfast-sequence').start, end=prog.episode_by_id('observe-utensil-ep').start, ctype='controllable',lb=0.0,ub=0.0), TemporalConstraint(start=prog.episode_by_id('breakfast-sequence').start, end=prog.episode_by_id('choose-beverage-ingredient-ep').start, ctype='controllable',lb=0.2,ub=0.3), TemporalConstraint(start=prog.episode_by_id('parallel-food-ep').start, end=prog.episode_by_id('observe-food-ep').start, ctype='controllable',lb=0.0,ub=0.0), TemporalConstraint(start=prog.episode_by_id('parallel-food-ep').start, end=prog.episode_by_id('choose-food-ingredient-ep').start, ctype='controllable',lb=0.2,ub=0.3)] for tc in extra_tcs: prog.add_temporal_constraint(tc) prog.add_overall_temporal_constraint(ctype='controllable',lb=0.0,ub=7.0) prog.simplify_temporal_constraints() return prog
def rmpyl_simple_verbose(hello,uav): """Simple RMPyL example using verbose syntax.""" prog = RMPyL() prog *= prog.sequence(hello.scan(),uav.scan(),prog.parallel(hello.fly(),uav.fly())) return prog
action='(%s)' % (orb_ep_id.replace('-', ' ')), duration={ 'ctype': 'controllable', 'lb': 0.005, 'ub': 0.1 })) activation_tcs.append( TemporalConstraint(start=global_start, end=activation_episodes[-1].start, ctype='controllable', lb=float(time_bound), ub=float(time_bound))) global_prog = RMPyL(name='run()') global_prog *= global_prog.parallel(prog.plan, *activation_episodes, start=global_start) activation_tcs.append( TemporalConstraint(start=global_start, end=prog.first_event, ctype='controllable', lb=0.0, ub=0.005)) for tc in activation_tcs: global_prog.add_temporal_constraint(tc) # rmpyl_policy.to_ptpn(filename=output_file) #ipdb.set_trace()