示例#1
0
    def __init__(self,
                 vector_field_module,
                 degree,
                 name=None,
                 latex_name=None):
        r"""
        Construct a differential form.

        TESTS:

        Construction via ``parent.element_class``, and not via a direct call
        to ``DiffForm`, to fit with the category framework::

            sage: M = Manifold(2, 'M')
            sage: U = M.open_subset('U') ; V = M.open_subset('V')
            sage: M.declare_union(U,V)   # M is the union of U and V
            sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
            sage: xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y),
            ....:                    intersection_name='W', restrictions1= x>0,
            ....:                    restrictions2= u+v>0)
            sage: uv_to_xy = xy_to_uv.inverse()
            sage: W = U.intersection(V)
            sage: e_xy = c_xy.frame() ; e_uv = c_uv.frame()
            sage: A = M.diff_form_module(2)
            sage: XM = M.vector_field_module()
            sage: a = A.element_class(XM, 2, name='a'); a
            2-form a on the 2-dimensional differentiable manifold M
            sage: a[e_xy,0,1] = x+y
            sage: a.add_comp_by_continuation(e_uv, W, c_uv)
            sage: TestSuite(a).run(skip='_test_pickling')

        Construction with ``DifferentiableManifold.diff_form``::

            sage: a1 = M.diff_form(2, name='a'); a1
            2-form a on the 2-dimensional differentiable manifold M
            sage: type(a1) == type(a)
            True
            sage: a1.parent() is a.parent()
            True

        .. TODO::

            Fix ``_test_pickling`` (in the superclass :class:`TensorField`).

        """
        TensorField.__init__(
            self,
            vector_field_module, (0, degree),
            name=name,
            latex_name=latex_name,
            antisym=range(degree),
            parent=vector_field_module.dual_exterior_power(degree))
        self._init_derived()  # initialization of derived quantities
示例#2
0
    def __init__(self, tensor, embedding, screen=None):
        r"""

        TESTS::

            sage: M = Manifold(4, 'M', structure="Lorentzian")
            sage: X.<t,x,y,z> = M.chart()
            sage: S = Manifold(3, 'S', ambient=M, structure='degenerate_metric')
            sage: X_S.<u,v,w> = S.chart()
            sage: Phi = S.diff_map(M, {(X_S, X): [u, u, v, w]},
            ....:                  name='Phi', latex_name=r'\Phi');
            sage: Phi_inv = M.diff_map(S, {(X, X_S): [x,y, z]}, name='Phi_inv',
            ....:                      latex_name=r'\Phi^{-1}');
            sage: S.set_immersion(Phi, inverse=Phi_inv); S.declare_embedding()
            sage: g = M.metric()
            sage: g[0,0], g[1,1], g[2,2], g[3,3] = -1,1,1,1
            sage: v = M.vector_field(); v[1] = 1
            sage: S.set_transverse(rigging=v)
            sage: xi = M.vector_field(); xi[0] = 1; xi[1] = 1
            sage: U = M.vector_field(); U[2] = 1; V = M.vector_field(); V[3] = 1
            sage: Sc = S.screen('Sc', (U,V), xi);
            sage: T1 = M.tensor_field(1,1).along(Phi); T1[0,0] = 1
            sage: from sage.manifolds.differentiable.degenerate_submanifold import TangentTensor
            sage: T2 = TangentTensor(T1, Phi); T2
            Tensor field of type (1,1) along the degenerate hypersurface S embedded in
            4-dimensional differentiable manifold M with values on the 4-dimensional
            Lorentzian manifold M

        """
        if not isinstance(tensor, TensorField):
            raise TypeError("the second argument must be a tensor field")
        self._tensor = tensor
        self._tensor.set_name(tensor._name, latex_name=tensor._latex_name)
        self._embedding = embedding
        try:
            tensor = tensor.along(embedding)
        except ValueError:
            pass
        if isinstance(tensor, TensorFieldParal):
            TensorFieldParal.__init__(self, tensor._vmodule, tensor._tensor_type, name=tensor._name,
                   latex_name=tensor._latex_name, sym=tensor._sym, antisym=tensor._antisym)
        else:
            TensorField.__init__(self, tensor._vmodule, tensor._tensor_type, name=tensor._name,
                   latex_name=tensor._latex_name, sym=tensor._sym, antisym=tensor._antisym)
        f = tensor._domain._ambient.default_frame().along(embedding)
        self[f, :] = tensor[f, :]
        frame = self._domain.adapted_frame(screen)
        self.display(frame)
        for i in self._domain._ambient.index_generator(tensor.tensor_rank()):
            for j in range(len(i)):
                if i[j]==self._domain._ambient._dim-self._domain._sindex-1:
                    self[frame, i] = 0
示例#3
0
    def __init__(self, vector_field_module, degree, name=None, latex_name=None):
        r"""
        Construct a differential form.

        TESTS:

        Construction via ``parent.element_class``, and not via a direct call
        to ``DiffForm`, to fit with the category framework::

            sage: M = Manifold(2, 'M')
            sage: U = M.open_subset('U') ; V = M.open_subset('V')
            sage: M.declare_union(U,V)   # M is the union of U and V
            sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
            sage: xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y),
            ....:                    intersection_name='W', restrictions1= x>0,
            ....:                    restrictions2= u+v>0)
            sage: uv_to_xy = xy_to_uv.inverse()
            sage: W = U.intersection(V)
            sage: e_xy = c_xy.frame() ; e_uv = c_uv.frame()
            sage: A = M.diff_form_module(2)
            sage: XM = M.vector_field_module()
            sage: a = A.element_class(XM, 2, name='a'); a
            2-form a on the 2-dimensional differentiable manifold M
            sage: a[e_xy,0,1] = x+y
            sage: a.add_comp_by_continuation(e_uv, W, c_uv)
            sage: TestSuite(a).run(skip='_test_pickling')

        Construction with ``DifferentiableManifold.diff_form``::

            sage: a1 = M.diff_form(2, name='a'); a1
            2-form a on the 2-dimensional differentiable manifold M
            sage: type(a1) == type(a)
            True
            sage: a1.parent() is a.parent()
            True

        .. TODO::

            Fix ``_test_pickling`` (in the superclass :class:`TensorField`).

        """
        TensorField.__init__(self, vector_field_module, (0,degree), name=name,
                             latex_name=latex_name, antisym=range(degree),
                             parent=vector_field_module.dual_exterior_power(degree))
        self._init_derived() # initialization of derived quantities
示例#4
0
    def __init__(self, vector_field_module, name=None, latex_name=None):
        r"""
        Construct a vector field with values on a non-parallelizable manifold.

        TESTS:

        Construction via ``parent.element_class``, and not via a direct call
        to ``VectorField``, to fit with the category framework::

            sage: M = Manifold(2, 'M') # the 2-dimensional sphere S^2
            sage: U = M.open_subset('U') # complement of the North pole
            sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
            sage: V = M.open_subset('V') # complement of the South pole
            sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
            sage: M.declare_union(U,V)   # S^2 is the union of U and V
            sage: XM = M.vector_field_module()
            sage: a = XM.element_class(XM, name='a'); a
            Vector field a on the 2-dimensional differentiable manifold M
            sage: a[c_xy.frame(),:] = [x, y]
            sage: a[c_uv.frame(),:] = [-u, -v]
            sage: TestSuite(a).run(skip='_test_pickling')

        Construction with ``DifferentiableManifold.vector_field``::

            sage: a1 = M.vector_field(name='a'); a1
            Vector field a on the 2-dimensional differentiable manifold M
            sage: type(a1) == type(a)
            True

        .. TODO::

            Fix ``_test_pickling`` (in the superclass :class:`TensorField`).

        """
        TensorField.__init__(self,
                             vector_field_module, (1, 0),
                             name=name,
                             latex_name=latex_name)
        # Initialization of derived quantities:
        TensorField._init_derived(self)
        # Initialization of list of quantities depending on self:
        self._init_dependencies()
示例#5
0
    def __init__(self, vector_field_module, name=None, latex_name=None):
        r"""
        Construct a vector field with values on a non-parallelizable manifold.

        TESTS:

        Construction via ``parent.element_class``, and not via a direct call
        to ``VectorField``, to fit with the category framework::

            sage: M = Manifold(2, 'M') # the 2-dimensional sphere S^2
            sage: U = M.open_subset('U') # complement of the North pole
            sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
            sage: V = M.open_subset('V') # complement of the South pole
            sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
            sage: M.declare_union(U,V)   # S^2 is the union of U and V
            sage: XM = M.vector_field_module()
            sage: a = XM.element_class(XM, name='a'); a
            Vector field a on the 2-dimensional differentiable manifold M
            sage: a[c_xy.frame(),:] = [x, y]
            sage: a[c_uv.frame(),:] = [-u, -v]
            sage: TestSuite(a).run(skip='_test_pickling')

        Construction with ``DifferentiableManifold.vector_field``::

            sage: a1 = M.vector_field(name='a'); a1
            Vector field a on the 2-dimensional differentiable manifold M
            sage: type(a1) == type(a)
            True

        .. TODO::

            Fix ``_test_pickling`` (in the superclass :class:`TensorField`).

        """
        TensorField.__init__(self, vector_field_module, (1,0), name=name,
                             latex_name=latex_name)
        # Initialization of derived quantities:
        TensorField._init_derived(self)
        # Initialization of list of quantities depending on self:
        self._init_dependencies()
示例#6
0
    def __init__(self, vector_field_module, name=None, latex_name=None,
                 is_identity=False):
        r"""
        Construct a field of tangent-space automorphisms on a
        non-parallelizable manifold.

        TESTS:

        Construction via ``parent.element_class``, and not via a direct call
        to ``AutomorphismField``, to fit with the category framework::

            sage: M = Manifold(2, 'M')
            sage: U = M.open_subset('U') ; V = M.open_subset('V')
            sage: M.declare_union(U,V)   # M is the union of U and V
            sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
            sage: transf = c_xy.transition_map(c_uv, (x+y, x-y), intersection_name='W',
            ....:                              restrictions1= x>0, restrictions2= u+v>0)
            sage: inv = transf.inverse()
            sage: XM = M.vector_field_module()
            sage: GL = XM.general_linear_group()
            sage: a = GL.element_class(XM, name='a'); a
            Field of tangent-space automorphisms a on the 2-dimensional
             differentiable manifold M
            sage: a[c_xy.frame(), :] = [[1+x^2, 0], [0, 1+y^2]]
            sage: a.add_comp_by_continuation(c_uv.frame(), U.intersection(V), c_uv)
            sage: TestSuite(a).run(skip='_test_pickling')

        Construction of the identity field::

            sage: b = GL.element_class(XM, is_identity=True); b
            Field of tangent-space identity maps on the 2-dimensional
             differentiable manifold M
            sage: TestSuite(b).run(skip='_test_pickling')

        Construction with ``DifferentiableManifold.automorphism_field``::

            sage: a1 = M.automorphism_field(name='a'); a1
            Field of tangent-space automorphisms a on the 2-dimensional
             differentiable manifold M
            sage: type(a1) == type(a)
            True

        .. TODO::

            Fix ``_test_pickling`` (in the superclass :class:`TensorField`).

        """
        if is_identity:
            if name is None:
                name = 'Id'
            if latex_name is None and name == 'Id':
                latex_name = r'\mathrm{Id}'
        TensorField.__init__(self, vector_field_module, (1,1), name=name,
                             latex_name=latex_name,
                             parent=vector_field_module.general_linear_group())
        self._is_identity = is_identity
        self._init_derived() # initialization of derived quantities
        # Specific initializations for the field of identity maps:
        if self._is_identity:
            self._inverse = self
            for dom in self._domain._subsets:
                if dom.is_manifestly_parallelizable():
                    fmodule = dom.vector_field_module()
                    self._restrictions[dom] = fmodule.identity_map(name=name,
                                                         latex_name=latex_name)
    def __init__(self, vector_field_module, name=None, latex_name=None,
                 is_identity=False):
        r"""
        Construct a field of tangent-space automorphisms on a
        non-parallelizable manifold.

        TESTS:

        Construction via ``parent.element_class``, and not via a direct call
        to ``AutomorphismField``, to fit with the category framework::

            sage: M = Manifold(2, 'M')
            sage: U = M.open_subset('U') ; V = M.open_subset('V')
            sage: M.declare_union(U,V)   # M is the union of U and V
            sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart()
            sage: transf = c_xy.transition_map(c_uv, (x+y, x-y), intersection_name='W',
            ....:                              restrictions1= x>0, restrictions2= u+v>0)
            sage: inv = transf.inverse()
            sage: XM = M.vector_field_module()
            sage: GL = XM.general_linear_group()
            sage: a = GL.element_class(XM, name='a'); a
            Field of tangent-space automorphisms a on the 2-dimensional
             differentiable manifold M
            sage: a[c_xy.frame(), :] = [[1+x^2, 0], [0, 1+y^2]]
            sage: a.add_comp_by_continuation(c_uv.frame(), U.intersection(V), c_uv)
            sage: TestSuite(a).run(skip='_test_pickling')

        Construction of the identity field::

            sage: b = GL.element_class(XM, is_identity=True); b
            Field of tangent-space identity maps on the 2-dimensional
             differentiable manifold M
            sage: TestSuite(b).run(skip='_test_pickling')

        Construction with ``DifferentiableManifold.automorphism_field``::

            sage: a1 = M.automorphism_field(name='a'); a1
            Field of tangent-space automorphisms a on the 2-dimensional
             differentiable manifold M
            sage: type(a1) == type(a)
            True

        .. TODO::

            Fix ``_test_pickling`` (in the superclass :class:`TensorField`).

        """
        if is_identity:
            if name is None:
                name = 'Id'
            if latex_name is None and name == 'Id':
                latex_name = r'\mathrm{Id}'
        TensorField.__init__(self, vector_field_module, (1,1), name=name,
                             latex_name=latex_name,
                             parent=vector_field_module.general_linear_group())
        self._is_identity = is_identity
        self._init_derived() # initialization of derived quantities
        # Specific initializations for the field of identity maps:
        if self._is_identity:
            self._inverse = self
            for dom in self._domain._subsets:
                if dom.is_manifestly_parallelizable():
                    fmodule = dom.vector_field_module()
                    self._restrictions[dom] = fmodule.identity_map(name=name,
                                                         latex_name=latex_name)