def _init_derived(self): r""" Initialize the derived quantities. TESTS:: sage: M = Manifold(2, 'M') sage: a = M.automorphism_field(name='a') sage: a._init_derived() """ TensorField._init_derived(self) self._inverse = None # inverse not set yet
def __init__(self, vector_field_module, name=None, latex_name=None): r""" Construct a vector field with values on a non-parallelizable manifold. TESTS: Construction via ``parent.element_class``, and not via a direct call to ``VectorField``, to fit with the category framework:: sage: M = Manifold(2, 'M') # the 2-dimensional sphere S^2 sage: U = M.open_subset('U') # complement of the North pole sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole sage: V = M.open_subset('V') # complement of the South pole sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole sage: M.declare_union(U,V) # S^2 is the union of U and V sage: XM = M.vector_field_module() sage: a = XM.element_class(XM, name='a'); a Vector field a on the 2-dimensional differentiable manifold M sage: a[c_xy.frame(),:] = [x, y] sage: a[c_uv.frame(),:] = [-u, -v] sage: TestSuite(a).run(skip='_test_pickling') Construction with ``DifferentiableManifold.vector_field``:: sage: a1 = M.vector_field(name='a'); a1 Vector field a on the 2-dimensional differentiable manifold M sage: type(a1) == type(a) True .. TODO:: Fix ``_test_pickling`` (in the superclass :class:`TensorField`). """ TensorField.__init__(self, vector_field_module, (1, 0), name=name, latex_name=latex_name) # Initialization of derived quantities: TensorField._init_derived(self) # Initialization of list of quantities depending on self: self._init_dependencies()
def __init__(self, vector_field_module, name=None, latex_name=None): r""" Construct a vector field with values on a non-parallelizable manifold. TESTS: Construction via ``parent.element_class``, and not via a direct call to ``VectorField``, to fit with the category framework:: sage: M = Manifold(2, 'M') # the 2-dimensional sphere S^2 sage: U = M.open_subset('U') # complement of the North pole sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole sage: V = M.open_subset('V') # complement of the South pole sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole sage: M.declare_union(U,V) # S^2 is the union of U and V sage: XM = M.vector_field_module() sage: a = XM.element_class(XM, name='a'); a Vector field a on the 2-dimensional differentiable manifold M sage: a[c_xy.frame(),:] = [x, y] sage: a[c_uv.frame(),:] = [-u, -v] sage: TestSuite(a).run(skip='_test_pickling') Construction with ``DifferentiableManifold.vector_field``:: sage: a1 = M.vector_field(name='a'); a1 Vector field a on the 2-dimensional differentiable manifold M sage: type(a1) == type(a) True .. TODO:: Fix ``_test_pickling`` (in the superclass :class:`TensorField`). """ TensorField.__init__(self, vector_field_module, (1,0), name=name, latex_name=latex_name) # Initialization of derived quantities: TensorField._init_derived(self) # Initialization of list of quantities depending on self: self._init_dependencies()