示例#1
0
    def __init__(self, A, B, C,**options):
        """
            Initialize HyperbolicTriangle under the map (z-z0)/(z-\bar(z0)):

        Examples::
        
            sage: from sage.plot.hyperbolic_triangle import HyperbolicTriangle
            sage: print HyperbolicTriangle(0, 1/2, I, {})
            Hyperbolic triangle (0.000000000000000, 0.500000000000000, 1.00000000000000*I)
        """
        A, B, C = (CC(A), CC(B), CC(C))
        self.path = []
        self._graphics = Graphics()
        Z0 = options['center'] #.get('center',C(0,1))
        self._z0=CC(Z0); self._z0bar=CC(Z0).conjugate()        
        self._hyperbolic_arc_d(A, B, True);
        self._hyperbolic_arc_d(B, C);
        self._hyperbolic_arc_d(C, A);
        #BezierPath.__init__(self, self.path, options)
        options.pop('center',None)
        if options=={} or options==None:
            self._options = {}
        else:
            self._options = options
        #super(HyperbolicTriangleDisc,self).__init__(options)
        self.A, self.B, self.C = (A, B, C)
示例#2
0
def my_hyperbolic_triangle(a, b, c, **options):
    """
    Return a hyperbolic triangle in the complex hyperbolic plane with points
    (a, b, c). Type ``?hyperbolic_triangle`` to see all options.

    INPUT:

    - ``a, b, c`` - complex numbers in the upper half complex plane

    OPTIONS:
    
    - ``alpha`` - default: 1
       
    - ``fill`` - default: False

    - ``thickness`` - default: 1

    - ``rgbcolor`` - default: 'blue'

    - ``linestyle`` - default: 'solid'

    EXAMPLES:

    Show a hyperbolic triangle with coordinates 0, `1/2+i\sqrt{3}/2` and
    `-1/2+i\sqrt{3}/2`::
    
         sage: hyperbolic_triangle(0, -1/2+I*sqrt(3)/2, 1/2+I*sqrt(3)/2)

    A hyperbolic triangle with coordinates 0, 1 and 2+i::
    
         sage: hyperbolic_triangle(0, 1, 2+i, fill=true, rgbcolor='red')
    """
    from sage.plot.all import Graphics
    g = Graphics()
    g._set_extra_kwds(g._extract_kwds_for_show(options))
    model = options['model']
    npts = options.get('npts',10)
    sides = options.pop('sides',[1,2,3]) ## Which of the sides we will draw.
    verbose = options.get('verbose',0)
    options.pop('model',None); options.pop('method',None)
    if model=="D":
        #g.add_primitive(HyperbolicTriangleDisc(a, b, c, **options))
        #print "options=",options
        options['sides']=sides
        H = HyperbolicTriangleDisc(a, b, c, **options)
        g += H()
    else:
        options.pop('npts',None)
        if sides == [1,2,3]:
            if verbose>0:
                print "adding HyperbolicTriangle({0}, {1}, {2},options={3})".format(a,b,c,options)
            options.pop('verbose',0)
            g.add_primitive(HyperbolicTriangle(a, b, c, options))
        else:
            options['sides']=sides
            if verbose>0:
                print "adding MyHyperbolicTriangle({0}, {1}, {2},options={3})".format(a,b,c,options)
            g.add_primitive(MyHyperbolicTriangle(a, b, c, options))                           
    g.set_aspect_ratio(1)
    return g
示例#3
0
文件: plot_dom.py 项目: bubonic/psage
    def __init__(self, A, B, C, options):
        """
        Initialize HyperbolicTriangle:

        Examples::

            sage: from sage.plot.hyperbolic_triangle import HyperbolicTriangle
            sage: print HyperbolicTriangle(0, 1/2, I, {})
            Hyperbolic triangle (0.000000000000000, 0.500000000000000, 1.00000000000000*I)

        """
        A, B, C = (CC(A), CC(B), CC(C))
        self.path = []
        sides = options.pop('sides',[1,2,3])
        verbose=options.pop('verbose',0)
        sides.sort()
        if sides == [1]:
            if verbose>0:
                print "Drawing A - B!"
            self._hyperbolic_arc(A, B, True);
        elif sides == [2]:
            if verbose>0:
                print "Drawing B - C!"                
            self._hyperbolic_arc(B, C, True);
        elif sides == [3]:
            if verbose>0:
                print "Drawing C - A!"                
            self._hyperbolic_arc(C, A, True);
        elif sides == [1,2]:
            if verbose>0:
                print "Drawing A - B! & B - C!"
            self._hyperbolic_arc(A, B, True);
            self._hyperbolic_arc(B, C, False);
        elif sides == [1,3]:
            if verbose>0:
                print "Drawing C - A! & A - B"
            self._hyperbolic_arc(C, A,True)
            self._hyperbolic_arc(A, B, False)
        elif sides == [2,3]:
            if verbose>0:
                print "Drawing B - C! & C - A"
            self._hyperbolic_arc(B, C,True)
            self._hyperbolic_arc(C, A, False)            
        else:
            self._hyperbolic_arc(A, B,True)            
            self._hyperbolic_arc(B, C,False)
            self._hyperbolic_arc(C, A, False)            
            
        BezierPath.__init__(self, self.path, options)
        self.A, self.B, self.C = (A, B, C)
        self._pts = [A,B,C]
示例#4
0
    def __init__(self, A, B, C, options):
        """
        Initialize HyperbolicTriangle:

        Examples::

            sage: from sage.plot.hyperbolic_triangle import HyperbolicTriangle
            sage: print HyperbolicTriangle(0, 1/2, I, {})
            Hyperbolic triangle (0.000000000000000, 0.500000000000000, 1.00000000000000*I)

        """
        A, B, C = (CC(A), CC(B), CC(C))
        self.path = []
        sides = options.pop('sides', [1, 2, 3])
        verbose = options.pop('verbose', 0)
        sides.sort()
        if sides == [1]:
            if verbose > 0:
                print "Drawing A - B!"
            self._hyperbolic_arc(A, B, True)
        elif sides == [2]:
            if verbose > 0:
                print "Drawing B - C!"
            self._hyperbolic_arc(B, C, True)
        elif sides == [3]:
            if verbose > 0:
                print "Drawing C - A!"
            self._hyperbolic_arc(C, A, True)
        elif sides == [1, 2]:
            if verbose > 0:
                print "Drawing A - B! & B - C!"
            self._hyperbolic_arc(A, B, True)
            self._hyperbolic_arc(B, C, False)
        elif sides == [1, 3]:
            if verbose > 0:
                print "Drawing C - A! & A - B"
            self._hyperbolic_arc(C, A, True)
            self._hyperbolic_arc(A, B, False)
        elif sides == [2, 3]:
            if verbose > 0:
                print "Drawing B - C! & C - A"
            self._hyperbolic_arc(B, C, True)
            self._hyperbolic_arc(C, A, False)
        else:
            self._hyperbolic_arc(A, B, True)
            self._hyperbolic_arc(B, C, False)
            self._hyperbolic_arc(C, A, False)

        BezierPath.__init__(self, self.path, options)
        self.A, self.B, self.C = (A, B, C)
        self._pts = [A, B, C]
示例#5
0
文件: ellipse.py 项目: dagss/sage
    def _render_on_subplot(self, subplot):
        """
        Render this ellipse in a subplot.  This is the key function that
        defines how this ellipse graphics primitive is rendered in matplotlib's
        library.

        TESTS::

            sage: ellipse((0,0),3,1,pi/6,fill=True,alpha=0.3)

        ::

            sage: ellipse((3,2),1,2)
        """
        import matplotlib.patches as patches        
        options = self.options()
        p = patches.Ellipse(
                (self.x,self.y),
                self.r1*2.,self.r2*2.,self.angle/pi*180.)
        p.set_linewidth(float(options['thickness']))
        p.set_fill(options['fill'])
        a = float(options['alpha'])
        p.set_alpha(a)
        ec = to_mpl_color(options['edgecolor'])
        fc = to_mpl_color(options['facecolor'])
        if 'rgbcolor' in options: 
            ec = fc = to_mpl_color(options['rgbcolor'])
        p.set_edgecolor(ec)
        p.set_facecolor(fc)
        p.set_linestyle(options['linestyle'])
        z = int(options.pop('zorder', 0))
        p.set_zorder(z)
        subplot.add_patch(p)
示例#6
0
    def _render_on_subplot(self, subplot):
        """
        TESTS::

            sage: A = arc((1,1),3,4,pi/4,(pi,4*pi/3)); A
            Graphics object consisting of 1 graphics primitive
        """
        import matplotlib.patches as patches
        from sage.plot.misc import get_matplotlib_linestyle


        options = self.options()

        p = patches.Arc(
                (self.x,self.y),
                2.*self.r1,
                2.*self.r2,
                fmod(self.angle,2*pi)*(180./pi),
                self.s1*(180./pi),
                self.s2*(180./pi))
        p.set_linewidth(float(options['thickness']))
        a = float(options['alpha'])
        p.set_alpha(a)
        z = int(options.pop('zorder',1))
        p.set_zorder(z)
        c = to_mpl_color(options['rgbcolor'])
        p.set_linestyle(get_matplotlib_linestyle(options['linestyle'],return_type='long'))
        p.set_edgecolor(c)
        subplot.add_patch(p)
示例#7
0
    def _render_on_subplot(self, subplot):
        """
        Render this ellipse in a subplot.  This is the key function that
        defines how this ellipse graphics primitive is rendered in matplotlib's
        library.

        TESTS::

            sage: ellipse((0,0),3,1,pi/6,fill=True,alpha=0.3)

        ::

            sage: ellipse((3,2),1,2)
        """
        import matplotlib.patches as patches
        options = self.options()
        p = patches.Ellipse((self.x, self.y), self.r1 * 2., self.r2 * 2.,
                            self.angle / pi * 180.)
        p.set_linewidth(float(options['thickness']))
        p.set_fill(options['fill'])
        a = float(options['alpha'])
        p.set_alpha(a)
        ec = to_mpl_color(options['edgecolor'])
        fc = to_mpl_color(options['facecolor'])
        if 'rgbcolor' in options:
            ec = fc = to_mpl_color(options['rgbcolor'])
        p.set_edgecolor(ec)
        p.set_facecolor(fc)
        p.set_linestyle(options['linestyle'])
        p.set_label(options['legend_label'])
        z = int(options.pop('zorder', 0))
        p.set_zorder(z)
        subplot.add_patch(p)
示例#8
0
文件: arc.py 项目: pombredanne/sage-1
    def _render_on_subplot(self, subplot):
        """
        TESTS::

            sage: A = arc((1,1),3,4,pi/4,(pi,4*pi/3)); A
        """
        import matplotlib.patches as patches

        options = self.options()

        p = patches.Arc(
                (self.x,self.y),
                2.*self.r1,
                2.*self.r2,
                fmod(self.angle,2*pi)*(180./pi),
                self.s1*(180./pi),
                self.s2*(180./pi))
        p.set_linewidth(float(options['thickness']))
        a = float(options['alpha'])
        p.set_alpha(a)
        z = int(options.pop('zorder',1))
        p.set_zorder(z)
        c = to_mpl_color(options['rgbcolor'])
        p.set_linestyle(options['linestyle'])
        p.set_edgecolor(c)
        subplot.add_patch(p)
示例#9
0
    def _render_on_subplot(self, subplot):
        """
        TESTS::

            sage: A = arc((1,1),3,4,pi/4,(pi,4*pi/3)); A
        """
        import matplotlib.patches as patches

        options = self.options()

        p = patches.Arc(
                (self.x,self.y),
                2.*self.r1,
                2.*self.r2,
                fmod(self.angle,2*pi)*(180./pi),
                self.s1*(180./pi),
                self.s2*(180./pi))
        p.set_linewidth(float(options['thickness']))
        a = float(options['alpha'])
        p.set_alpha(a)
        z = int(options.pop('zorder',1))
        p.set_zorder(z)
        c = to_mpl_color(options['rgbcolor'])
        p.set_linestyle(options['linestyle'])
        p.set_edgecolor(c)
        subplot.add_patch(p)
示例#10
0
    def get_minmax_data(self):
        """
        Get minimum and maximum horizontal and vertical ranges
        for the Histogram object.

        EXAMPLES::

            sage: H = histogram([10,3,5], normed=True); h = H[0]
            sage: h.get_minmax_data()
            {'xmax': 10.0, 'xmin': 3.0, 'ymax': 0.4761904761904765, 'ymin': 0}
            sage: G = histogram([random() for _ in range(500)]); g = G[0]
            sage: g.get_minmax_data() # random output
            {'xmax': 0.99729312925213209, 'xmin': 0.00013024562219410285, 'ymax': 61, 'ymin': 0}
            sage: Y = histogram([random()*10 for _ in range(500)], range=[2,8]); y = Y[0]
            sage: ymm = y.get_minmax_data(); ymm['xmax'], ymm['xmin']
            (8.0, 2.0)
            sage: Z = histogram([[1,3,2,0], [4,4,3,3]]); z = Z[0]
            sage: z.get_minmax_data()
            {'xmax': 4.0, 'xmin': 0, 'ymax': 2, 'ymin': 0}
        """
        import numpy
        options=self.options()
        opt=dict(range = options.pop('range',None),
                 bins = options.pop('bins',None),
                 normed = options.pop('normed',None),
                 weights = options.pop('weights', None))
 
        #check to see if a list of datasets
        if not hasattr(self.datalist[0],'__contains__' ):
            ydata,xdata=numpy.histogram(self.datalist, **opt)
            return minmax_data(xdata,[0]+list(ydata), dict=True)
        else:
            m = { 'xmax': 0, 'xmin':0, 'ymax':0, 'ymin':0}
            if not options.pop('stacked',None):
                for d in self.datalist:
                    ydata, xdata = numpy.histogram(d,**opt)
                    m['xmax'] = max([m['xmax']] + list(xdata))
                    m['xmin'] = min([m['xmin']] + list(xdata))
                    m['ymax'] = max([m['ymax']] + list(ydata))
                return m
            else:
                for d in self.datalist:
                    ydata, xdata = numpy.histogram(d,**opt)
                    m['xmax'] = max([m['xmax']] + list(xdata))
                    m['xmin'] = min([m['xmin']] + list(xdata))
                    m['ymax'] = m['ymax'] + max(list(ydata))
                return m
示例#11
0
    def get_minmax_data(self):
        """
        Get minimum and maximum horizontal and vertical ranges
        for the Histogram object.

        EXAMPLES::

            sage: H = histogram([10,3,5], normed=True); h = H[0]
            sage: h.get_minmax_data()
            {'xmax': 10.0, 'xmin': 3.0, 'ymax': 0.4761904761904765, 'ymin': 0}
            sage: G = histogram([random() for _ in range(500)]); g = G[0]
            sage: g.get_minmax_data() # random output
            {'xmax': 0.99729312925213209, 'xmin': 0.00013024562219410285, 'ymax': 61, 'ymin': 0}
            sage: Y = histogram([random()*10 for _ in range(500)], range=[2,8]); y = Y[0]
            sage: ymm = y.get_minmax_data(); ymm['xmax'], ymm['xmin']
            (8.0, 2.0)
            sage: Z = histogram([[1,3,2,0], [4,4,3,3]]); z = Z[0]
            sage: z.get_minmax_data()
            {'xmax': 4.0, 'xmin': 0, 'ymax': 2, 'ymin': 0}
        """
        import numpy
        options=self.options()
        opt=dict(range = options.pop('range',None),
                 bins = options.pop('bins',None),
                 normed = options.pop('normed',None),
                 weights = options.pop('weights', None))
 
        #check to see if a list of datasets
        if not hasattr(self.datalist[0],'__contains__' ):
            ydata,xdata=numpy.histogram(self.datalist, **opt)
            return minmax_data(xdata,[0]+list(ydata), dict=True)
        else:
            m = { 'xmax': 0, 'xmin':0, 'ymax':0, 'ymin':0}
            if not options.pop('stacked',None):
                for d in self.datalist:
                    ydata, xdata = numpy.histogram(d,**opt)
                    m['xmax'] = max([m['xmax']] + list(xdata))
                    m['xmin'] = min([m['xmin']] + list(xdata))
                    m['ymax'] = max([m['ymax']] + list(ydata))
                return m
            else:
                for d in self.datalist:
                    ydata, xdata = numpy.histogram(d,**opt)
                    m['xmax'] = max([m['xmax']] + list(xdata))
                    m['xmin'] = min([m['xmin']] + list(xdata))
                    m['ymax'] = m['ymax'] + max(list(ydata))
                return m
示例#12
0
def my_hyperbolic_triangle(a, b, c, **options):
    """
    Return a hyperbolic triangle in the complex hyperbolic plane with points
    (a, b, c). Type ``?hyperbolic_triangle`` to see all options.

    INPUT:

    - ``a, b, c`` - complex numbers in the upper half complex plane

    OPTIONS:
    
    - ``alpha`` - default: 1
       
    - ``fill`` - default: False

    - ``thickness`` - default: 1

    - ``rgbcolor`` - default: 'blue'

    - ``linestyle`` - default: 'solid'

    EXAMPLES:

    Show a hyperbolic triangle with coordinates 0, `1/2+i\sqrt{3}/2` and
    `-1/2+i\sqrt{3}/2`::
    
         sage: hyperbolic_triangle(0, -1/2+I*sqrt(3)/2, 1/2+I*sqrt(3)/2)

    A hyperbolic triangle with coordinates 0, 1 and 2+i::
    
         sage: hyperbolic_triangle(0, 1, 2+i, fill=true, rgbcolor='red')
    """
    from sage.plot.all import Graphics
    g = Graphics()
    g._set_extra_kwds(g._extract_kwds_for_show(options))
    model = options['model']
    options.pop('model',None); options.pop('method',None)
    if model=="D":
        #g.add_primitive(HyperbolicTriangleDisc(a, b, c, **options))
        H = HyperbolicTriangleDisc(a, b, c, **options)
        g += H()
    else:
        g.add_primitive(HyperbolicTriangle(a, b, c, options))
    g.set_aspect_ratio(1)
    return g
示例#13
0
文件: arc.py 项目: ProgVal/sage
    def _render_on_subplot(self, subplot):
        """
        TESTS::

            sage: A = arc((1,1),3,4,pi/4,(pi,4*pi/3)); A
            Graphics object consisting of 1 graphics primitive
        """
        from sage.plot.misc import get_matplotlib_linestyle

        options = self.options()

        p = self._matplotlib_arc()
        p.set_linewidth(float(options['thickness']))
        a = float(options['alpha'])
        p.set_alpha(a)
        z = int(options.pop('zorder', 1))
        p.set_zorder(z)
        c = to_mpl_color(options['rgbcolor'])
        p.set_linestyle(get_matplotlib_linestyle(options['linestyle'],
                                                 return_type='long'))
        p.set_edgecolor(c)
        subplot.add_patch(p)
示例#14
0
    def _render_on_subplot(self, subplot):
        """
        TESTS::

            sage: A = arc((1,1),3,4,pi/4,(pi,4*pi/3)); A
            Graphics object consisting of 1 graphics primitive
        """
        from sage.plot.misc import get_matplotlib_linestyle

        options = self.options()

        p = self._matplotlib_arc()
        p.set_linewidth(float(options['thickness']))
        a = float(options['alpha'])
        p.set_alpha(a)
        z = int(options.pop('zorder', 1))
        p.set_zorder(z)
        c = to_mpl_color(options['rgbcolor'])
        p.set_linestyle(
            get_matplotlib_linestyle(options['linestyle'], return_type='long'))
        p.set_edgecolor(c)
        subplot.add_patch(p)
示例#15
0
文件: ellipse.py 项目: imark83/sage
    def _render_on_subplot(self, subplot):
        """
        Render this ellipse in a subplot.  This is the key function that
        defines how this ellipse graphics primitive is rendered in matplotlib's
        library.

        TESTS::

            sage: ellipse((0,0),3,1,pi/6,fill=True,alpha=0.3)
            Graphics object consisting of 1 graphics primitive

        ::

            sage: ellipse((3,2),1,2)
            Graphics object consisting of 1 graphics primitive
        """
        import matplotlib.patches as patches
        from sage.plot.misc import get_matplotlib_linestyle

        options = self.options()
        p = patches.Ellipse((self.x, self.y), self.r1 * 2.0, self.r2 * 2.0, self.angle / pi * 180.0)
        p.set_linewidth(float(options["thickness"]))
        p.set_fill(options["fill"])
        a = float(options["alpha"])
        p.set_alpha(a)
        ec = to_mpl_color(options["edgecolor"])
        fc = to_mpl_color(options["facecolor"])
        if "rgbcolor" in options:
            ec = fc = to_mpl_color(options["rgbcolor"])
        p.set_edgecolor(ec)
        p.set_facecolor(fc)
        p.set_linestyle(get_matplotlib_linestyle(options["linestyle"], return_type="long"))
        p.set_label(options["legend_label"])
        z = int(options.pop("zorder", 0))
        p.set_zorder(z)
        subplot.add_patch(p)
示例#16
0
def my_hyperbolic_triangle(a, b, c, **options):
    """
    Return a hyperbolic triangle in the complex hyperbolic plane with points
    (a, b, c). Type ``?hyperbolic_triangle`` to see all options.

    INPUT:

    - ``a, b, c`` - complex numbers in the upper half complex plane

    OPTIONS:
    
    - ``alpha`` - default: 1
       
    - ``fill`` - default: False

    - ``thickness`` - default: 1

    - ``rgbcolor`` - default: 'blue'

    - ``linestyle`` - default: 'solid'

    EXAMPLES:

    Show a hyperbolic triangle with coordinates 0, `1/2+i\sqrt{3}/2` and
    `-1/2+i\sqrt{3}/2`::
    
         sage: hyperbolic_triangle(0, -1/2+I*sqrt(3)/2, 1/2+I*sqrt(3)/2)

    A hyperbolic triangle with coordinates 0, 1 and 2+i::
    
         sage: hyperbolic_triangle(0, 1, 2+i, fill=true, rgbcolor='red')
    """
    from sage.plot.all import Graphics
    g = Graphics()
    g._set_extra_kwds(g._extract_kwds_for_show(options))
    model = options['model']
    npts = options.get('npts', 10)
    sides = options.pop('sides',
                        [1, 2, 3])  ## Which of the sides we will draw.
    verbose = options.get('verbose', 0)
    options.pop('model', None)
    options.pop('method', None)
    if model == "D":
        #g.add_primitive(HyperbolicTriangleDisc(a, b, c, **options))
        #print "options=",options
        options['sides'] = sides
        H = HyperbolicTriangleDisc(a, b, c, **options)
        g += H()
    else:
        options.pop('npts', None)
        if sides == [1, 2, 3]:
            if verbose > 0:
                print "adding HyperbolicTriangle({0}, {1}, {2},options={3})".format(
                    a, b, c, options)
            options.pop('verbose', 0)
            ## check if We need my class or the original class
            g.add_primitive(HyperbolicTriangle(a, b, c, options))
        else:
            options['sides'] = sides
            if verbose > 0:
                print "adding HyperbolicTriangle({0}, {1}, {2},options={3})".format(
                    a, b, c, options)
            g.add_primitive(HyperbolicTriangle(a, b, c, options))
    g.set_aspect_ratio(1)
    return g
示例#17
0
    def __init__(self, A, B, C,**options):
        """
        Initialize HyperbolicTriangle under the map (z-z0)/(z-\bar(z0)):
        
        Examples::
        
            sage: from sage.plot.hyperbolic_triangle import HyperbolicTriangle
            sage: print HyperbolicTriangle(0, 1/2, I, {})
            Hyperbolic triangle (0.000000000000000, 0.500000000000000, 1.00000000000000*I)
        """
        A, B, C = (CC(A), CC(B), CC(C))
        self.path = []
        self._options = {}
        self._graphics = Graphics()
        self._verbose = options.pop('verbose',None)
        Z0 = options['center'] #.get('center',C(0,1))
        options.pop('center',None)
        self._npts = options.pop('npts',10)
        sides = options.pop('sides',[1,2,3])
        #options.pop('fill',None)
        self._options.update(options)
        self._z0=CC(Z0); self._z0bar=CC(Z0).conjugate()        
        verbose=self._verbose
        sides.sort()
        if sides == [1]:
            if verbose>0:
                print "Drawing A - B!"
            self._hyperbolic_arc_d(A, B, True);
        elif sides == [2]:
            if verbose>0:
                print "Drawing B - C!"                
            self._hyperbolic_arc_d(B, C, True);
        elif sides == [3]:
            if verbose>0:
                print "Drawing C - A!"                
            self._hyperbolic_arc_d(C, A, True);
        elif sides == [1,2]:
            if verbose>0:
                print "Drawing A - B! & B - C!"
            self._hyperbolic_arc_d(A, B, True);
            self._hyperbolic_arc_d(B, C,False);
        elif sides == [1,3]:
            if verbose>0:
                print "Drawing C - A! & A - B"
            self._hyperbolic_arc_d(C, A,True)
            self._hyperbolic_arc_d(A, B, False)
        elif sides == [2,3]:
            if verbose>0:
                print "Drawing B - C! & C - A"
            self._hyperbolic_arc_d(B, C,True)
            self._hyperbolic_arc_d(C, A, False)            
        else:
            self._hyperbolic_arc_d(A, B,True)            
            self._hyperbolic_arc_d(B, C,False)
            self._hyperbolic_arc_d(C, A, False)
        #self._hyperbolic_arc_d(A, B, True);
        #self._hyperbolic_arc_d(B, C);
        #self._hyperbolic_arc_d(C, A);
        #BezierPath.__init__(self, self.path, options)


        #super(HyperbolicTriangleDisc,self).__init__(options)
        self.A, self.B, self.C = (A, B, C)
示例#18
0
    def __init__(self, A, B, C, **options):
        """
        Initialize HyperbolicTriangle under the map (z-z0)/(z-\bar(z0)):
        
        Examples::
        
            sage: from sage.plot.hyperbolic_triangle import HyperbolicTriangle
            sage: print HyperbolicTriangle(0, 1/2, I, {})
            Hyperbolic triangle (0.000000000000000, 0.500000000000000, 1.00000000000000*I)
        """
        A, B, C = (CC(A), CC(B), CC(C))
        self.path = []
        self._options = {}
        self._graphics = Graphics()
        self._verbose = options.pop('verbose', None)
        Z0 = options['center']  #.get('center',C(0,1))
        options.pop('center', None)
        self._npts = options.pop('npts', 10)
        sides = options.pop('sides', [1, 2, 3])
        #options.pop('fill',None)
        self._options.update(options)
        self._z0 = CC(Z0)
        self._z0bar = CC(Z0).conjugate()
        verbose = self._verbose
        sides.sort()
        if sides == [1]:
            if verbose > 0:
                print "Drawing A - B!"
            self._hyperbolic_arc_d(A, B, True)
        elif sides == [2]:
            if verbose > 0:
                print "Drawing B - C!"
            self._hyperbolic_arc_d(B, C, True)
        elif sides == [3]:
            if verbose > 0:
                print "Drawing C - A!"
            self._hyperbolic_arc_d(C, A, True)
        elif sides == [1, 2]:
            if verbose > 0:
                print "Drawing A - B! & B - C!"
            self._hyperbolic_arc_d(A, B, True)
            self._hyperbolic_arc_d(B, C, False)
        elif sides == [1, 3]:
            if verbose > 0:
                print "Drawing C - A! & A - B"
            self._hyperbolic_arc_d(C, A, True)
            self._hyperbolic_arc_d(A, B, False)
        elif sides == [2, 3]:
            if verbose > 0:
                print "Drawing B - C! & C - A"
            self._hyperbolic_arc_d(B, C, True)
            self._hyperbolic_arc_d(C, A, False)
        else:
            self._hyperbolic_arc_d(A, B, True)
            self._hyperbolic_arc_d(B, C, False)
            self._hyperbolic_arc_d(C, A, False)
        #self._hyperbolic_arc_d(A, B, True);
        #self._hyperbolic_arc_d(B, C);
        #self._hyperbolic_arc_d(C, A);
        #BezierPath.__init__(self, self.path, options)

        #super(HyperbolicTriangleDisc,self).__init__(options)
        self.A, self.B, self.C = (A, B, C)