示例#1
0
文件: special.py 项目: jeromeca/sage
def spherical_bessel_J(n, var, algorithm="maxima"):
    r"""
    Returns the spherical Bessel function of the first kind for
    integers n >= 1.

    Reference: AS 10.1.8 page 437 and AS 10.1.15 page 439.

    EXAMPLES::

        sage: spherical_bessel_J(2,x)
        ((3/x^2 - 1)*sin(x) - 3*cos(x)/x)/x
        sage: spherical_bessel_J(1, 5.2, algorithm='scipy')
        -0.12277149950007...
        sage: spherical_bessel_J(1, 3, algorithm='scipy')
        0.345677499762355...
    """
    if algorithm == "scipy":
        from scipy.special.specfun import sphj

        return sphj(int(n), float(var))[1][-1]
    elif algorithm == "maxima":
        _init()
        return meval("spherical_bessel_j(%s,%s)" % (ZZ(n), var))
    else:
        raise ValueError("unknown algorithm '%s'" % algorithm)
示例#2
0
文件: special.py 项目: manguluka/sage
def spherical_bessel_J(n, var, algorithm="maxima"):
    r"""
    Returns the spherical Bessel function of the first kind for
    integers n >= 1.

    Reference: AS 10.1.8 page 437 and AS 10.1.15 page 439.

    EXAMPLES::

        sage: spherical_bessel_J(2,x)
        ((3/x^2 - 1)*sin(x) - 3*cos(x)/x)/x
        sage: spherical_bessel_J(1, 5.2, algorithm='scipy')
        -0.12277149950007...
        sage: spherical_bessel_J(1, 3, algorithm='scipy')
        0.345677499762355...
    """
    if algorithm == "scipy":
        from scipy.special.specfun import sphj
        return CDF(sphj(int(n), float(var))[1][-1])
    elif algorithm == 'maxima':
        _init()
        return meval("spherical_bessel_j(%s,%s)"%(ZZ(n),var))
    else:
        raise ValueError("unknown algorithm '%s'"%algorithm)
示例#3
0
def two_phi_planewave_integrals(k_Gv, setup=None, Gstart=0, Gend=None,
                                rgd=None, phi_jg=None,
                                phit_jg=None,l_j=None):
    """Calculate PAW-correction matrix elements with planewaves.

    ::
    
      /  _       _   ik.r     _     ~   _   ik.r ~   _
      | dr [phi (r) e    phi (r) - phi (r) e    phi (r)]
      /        1            2         1            2

                        ll    -  /     2                      ~       ~
      = 4 * pi \sum_lm  i  Y (k) | dr r  [ phi (r) phi (r) - phi (r) phi (r) j (kr)
                            lm   /            1       2         1       2     ll

           /
        * | d\Omega Y     Y     Y
          /          l1m1  l2m2  lm
          
    """

    if Gend is None:
        Gend = len(k_Gv)
        
    if setup is not None:
        rgd = setup.rgd
        l_j = setup.l_j
        # Obtain the phi_j and phit_j
        phi_jg = []
        phit_jg = []
        rcut2 = 2 * max(setup.rcut_j)
        gcut2 = rgd.ceil(rcut2)
        for phi_g, phit_g in zip(setup.data.phi_jg, setup.data.phit_jg):
            phi_g = phi_g.copy()
            phit_g = phit_g.copy()
            phi_g[gcut2:] = phit_g[gcut2:] = 0.
            phi_jg.append(phi_g)
            phit_jg.append(phit_g)
    else:
        assert rgd is not None
        assert phi_jg is not None
        assert l_j is not None

    ng = rgd.N
    r_g = rgd.r_g
    dr_g = rgd.dr_g

    # Construct L (l**2 + m) and j (nl) index
    L_i = []
    j_i = []
    for j, l in enumerate(l_j):
        for m in range(2 * l + 1):
            L_i.append(l**2 + m)
            j_i.append(j)
    ni = len(L_i)
    nj = len(l_j)
    lmax = max(l_j) * 2 + 1

    if setup is not None:
        assert ni == setup.ni and nj == setup.nj

    # Initialize
    npw = k_Gv.shape[0]
    R_jj = np.zeros((nj, nj))
    R_ii = np.zeros((ni, ni))
    phi_Gii = np.zeros((npw, ni, ni), dtype=complex)
    j_lg = np.zeros((lmax, ng))

    # Store (phi_j1 * phi_j2 - phit_j1 * phit_j2 ) for further use
    tmp_jjg = np.zeros((nj, nj, ng))
    for j1 in range(nj):
        for j2 in range(nj):
            tmp_jjg[j1, j2] = (phi_jg[j1] * phi_jg[j2] -
                               phit_jg[j1] * phit_jg[j2])

    # Loop over G vectors
    for iG in range(Gstart, Gend):
        kk = k_Gv[iG] 
        k = np.sqrt(np.dot(kk, kk)) # calculate length of q+G

        # Calculating spherical bessel function
        for g, r in enumerate(r_g):
            j_lg[:, g] = sphj(lmax - 1,  k * r)[1]

        for li in range(lmax):
            # Radial part 
            for j1 in range(nj):
                for j2 in range(nj): 
                    R_jj[j1, j2] = np.dot(r_g**2*dr_g,
                                          tmp_jjg[j1, j2] * j_lg[li])

            for mi in range(2 * li + 1):
                # Angular part
                for i1 in range(ni):
                    L1 = L_i[i1]
                    j1 = j_i[i1]
                    for i2 in range(ni):
                        L2 = L_i[i2]
                        j2 = j_i[i2]
                        R_ii[i1, i2] = G_LLL[L1, L2, li**2+mi]  * R_jj[j1, j2]

                phi_Gii[iG] += R_ii * Y(li**2 + mi,
                                        kk[0]/k, kk[1]/k, kk[2]/k) * (-1j)**li
    
    phi_Gii *= 4 * pi

    return phi_Gii.reshape(npw, ni*ni)
示例#4
0
def two_phi_planewave_integrals(k_Gv,
                                setup=None,
                                Gstart=0,
                                Gend=None,
                                rgd=None,
                                phi_jg=None,
                                phit_jg=None,
                                l_j=None):
    """Calculate PAW-correction matrix elements with planewaves.

    ::
    
      /  _       _   ik.r     _     ~   _   ik.r ~   _
      | dr [phi (r) e    phi (r) - phi (r) e    phi (r)]
      /        1            2         1            2

                        ll    -  /     2                      ~       ~
      = 4 * pi \sum_lm  i  Y (k) | dr r  [ phi (r) phi (r) - phi (r) phi (r) j (kr)
                            lm   /            1       2         1       2     ll

           /
        * | d\Omega Y     Y     Y
          /          l1m1  l2m2  lm
          
    """

    if Gend is None:
        Gend = len(k_Gv)

    if setup is not None:
        rgd = setup.rgd
        l_j = setup.l_j
        # Obtain the phi_j and phit_j
        phi_jg = []
        phit_jg = []
        rcut2 = 2 * max(setup.rcut_j)
        gcut2 = rgd.ceil(rcut2)
        for phi_g, phit_g in zip(setup.data.phi_jg, setup.data.phit_jg):
            phi_g = phi_g.copy()
            phit_g = phit_g.copy()
            phi_g[gcut2:] = phit_g[gcut2:] = 0.
            phi_jg.append(phi_g)
            phit_jg.append(phit_g)
    else:
        assert rgd is not None
        assert phi_jg is not None
        assert l_j is not None

    ng = rgd.N
    r_g = rgd.r_g
    dr_g = rgd.dr_g

    # Construct L (l**2 + m) and j (nl) index
    L_i = []
    j_i = []
    for j, l in enumerate(l_j):
        for m in range(2 * l + 1):
            L_i.append(l**2 + m)
            j_i.append(j)
    ni = len(L_i)
    nj = len(l_j)
    lmax = max(l_j) * 2 + 1

    if setup is not None:
        assert ni == setup.ni and nj == setup.nj

    # Initialize
    npw = k_Gv.shape[0]
    R_jj = np.zeros((nj, nj))
    R_ii = np.zeros((ni, ni))
    phi_Gii = np.zeros((npw, ni, ni), dtype=complex)
    j_lg = np.zeros((lmax, ng))

    # Store (phi_j1 * phi_j2 - phit_j1 * phit_j2 ) for further use
    tmp_jjg = np.zeros((nj, nj, ng))
    for j1 in range(nj):
        for j2 in range(nj):
            tmp_jjg[j1,
                    j2] = (phi_jg[j1] * phi_jg[j2] - phit_jg[j1] * phit_jg[j2])

    # Loop over G vectors
    for iG in range(Gstart, Gend):
        kk = k_Gv[iG]
        k = np.sqrt(np.dot(kk, kk))  # calculate length of q+G

        # Calculating spherical bessel function
        for g, r in enumerate(r_g):
            j_lg[:, g] = sphj(lmax - 1, k * r)[1]

        for li in range(lmax):
            # Radial part
            for j1 in range(nj):
                for j2 in range(nj):
                    R_jj[j1, j2] = np.dot(r_g**2 * dr_g,
                                          tmp_jjg[j1, j2] * j_lg[li])

            for mi in range(2 * li + 1):
                # Angular part
                for i1 in range(ni):
                    L1 = L_i[i1]
                    j1 = j_i[i1]
                    for i2 in range(ni):
                        L2 = L_i[i2]
                        j2 = j_i[i2]
                        R_ii[i1, i2] = G_LLL[L1, L2, li**2 + mi] * R_jj[j1, j2]

                phi_Gii[iG] += R_ii * Y(li**2 + mi, kk[0] / k, kk[1] / k,
                                        kk[2] / k) * (-1j)**li

    phi_Gii *= 4 * pi

    return phi_Gii.reshape(npw, ni * ni)
示例#5
0
def two_phi_nabla_planewave_integrals(k_Gv, setup=None, Gstart=0, Gend=None,
                                      rgd=None, phi_jg=None,
                                      phit_jg=None, l_j=None):
    """Calculate PAW-correction matrix elements with planewaves and gradient.

    ::
    
      /  _       _   ik.r d       _     ~   _   ik.r d   ~   _
      | dr [phi (r) e     -- phi (r) - phi (r) e     -- phi (r)]
      /        1          dx    2         1          dx    2

    and similar for y and z."""

    if Gend is None:
        Gend = len(k_Gv)
        
    if setup is not None:
        rgd = setup.rgd
        l_j = setup.l_j
        # Obtain the phi_j and phit_j
        phi_jg = []
        phit_jg = []
        rcut2 = 2 * max(setup.rcut_j)
        gcut2 = rgd.ceil(rcut2)
        for phi_g, phit_g in zip(setup.data.phi_jg, setup.data.phit_jg):
            phi_g = phi_g.copy()
            phit_g = phit_g.copy()
            phi_g[gcut2:] = phit_g[gcut2:] = 0.
            phi_jg.append(phi_g)
            phit_jg.append(phit_g)
    else:
        assert rgd is not None
        assert phi_jg is not None
        assert l_j is not None

    ng = rgd.N
    r_g = rgd.r_g
    dr_g = rgd.dr_g

    # Construct L (l**2 + m) and j (nl) index
    L_i = []
    j_i = []
    for j, l in enumerate(l_j):
        for m in range(2 * l + 1):
            L_i.append(l**2 + m)
            j_i.append(j)
    ni = len(L_i)
    nj = len(l_j)
    lmax = max(l_j) * 2 + 1
    
    ljdef = 3
    l2max = max(l_j) * (max(l_j) > ljdef) + ljdef * (max(l_j) <= ljdef)
    G_LLL = gaunt(l2max)
    Y_LLv = nabla(2 * l2max)

    if setup is not None:
        assert ni == setup.ni and nj == setup.nj

    # Initialize
    npw = k_Gv.shape[0]
    R1_jj = np.zeros((nj, nj))
    R2_jj = np.zeros((nj, nj))
    R_vii = np.zeros((3, ni, ni))
    phi_vGii = np.zeros((3, npw, ni, ni), dtype=complex)
    j_lg = np.zeros((lmax, ng))
    
    # Store (phi_j1 * dphidr_j2 - phit_j1 * dphitdr_j2) for further use
    tmp_jjg = np.zeros((nj, nj, ng))
    tmpder_jjg = np.zeros((nj, nj, ng))
    for j1 in range(nj):
        for j2 in range(nj):
            dphidr_g = np.empty_like(phi_jg[j2])
            rgd.derivative(phi_jg[j2], dphidr_g)
            dphitdr_g = np.empty_like(phit_jg[j2])
            rgd.derivative(phit_jg[j2], dphitdr_g)

            tmpder_jjg[j1, j2] = (phi_jg[j1] * dphidr_g -
                                  phit_jg[j1] * dphitdr_g)
            tmp_jjg[j1, j2] = (phi_jg[j1] * phi_jg[j2] -
                               phit_jg[j1] * phit_jg[j2])

    # Loop over G vectors
    for iG in range(Gstart, Gend):
        kk = k_Gv[iG]
        k = np.sqrt(np.dot(kk, kk))  # calculate length of q+G

        # Calculating spherical bessel function
        for g, r in enumerate(r_g):
            j_lg[:, g] = sphj(lmax - 1, k * r)[1]

        for li in range(lmax):
            # Radial part
            for j1 in range(nj):
                for j2 in range(nj):
                    R1_jj[j1, j2] = np.dot(r_g**2 * dr_g,
                                           tmpder_jjg[j1, j2] * j_lg[li])
                    R2_jj[j1, j2] = np.dot(r_g * dr_g,
                                           tmp_jjg[j1, j2] * j_lg[li])

            for mi in range(2 * li + 1):
                if k == 0:
                    Ytmp = Y(li**2 + mi, 1.0, 0, 0)
                else:
                    # Note the spherical bessel gives
                    # zero when k == 0 for li != 0
                    Ytmp = Y(li**2 + mi, kk[0] / k, kk[1] / k, kk[2] / k)

                for v in range(3):
                    Lv = 1 + (v + 2) % 3
                    # Angular part
                    for i1 in range(ni):
                        L1 = L_i[i1]
                        j1 = j_i[i1]
                        for i2 in range(ni):
                            L2 = L_i[i2]
                            j2 = j_i[i2]
                            l2 = l_j[j2]

                            R_vii[v, i1, i2] = ((4 * pi / 3)**0.5 *
                                                np.dot(G_LLL[L1, L2],
                                                       G_LLL[Lv, li**2 + mi])
                                                * (R1_jj[j1, j2] - l2 *
                                                   R2_jj[j1, j2]))

                            R_vii[v, i1, i2] += (R2_jj[j1, j2] *
                                                 np.dot(G_LLL[L1, li**2 + mi],
                                                        Y_LLv[:, L2, v]))

                phi_vGii[:, iG] += (R_vii * Ytmp * (-1j)**li)

    phi_vGii *= 4 * pi

    return phi_vGii.reshape(3, npw, ni * ni)