示例#1
0
def plot_edges(ax, gel, length, show=False):
    """
    Plot edges of a geometry element as numbered arrows.
    """
    dim = gel.dim
    ax = _get_axes(ax, dim)

    l2 = 0.5 * length
    for ii, edge in enumerate(gel.edges):
        cc = gel.coors[edge]
        centre = 0.5 * cc.sum(axis=0)

        vdir = (cc - centre)
        normalize_vectors(vdir)

        cc = l2 * vdir + centre
        draw_arrow(ax, cc, length=0.3 * length, linewidth=3, color='b')

        if dim == 3:
            cx, cy, cz = centre
            ax.text(cx, cy, cz, ii, color='b', fontsize=10, weight='light')

        else:
            cx, cy = centre
            ax.text(cx, cy, ii, color='b', fontsize=10, weight='light')

    return ax
示例#2
0
def plot_edges(ax, gel, length, show=False):
    """
    Plot edges of a geometry element as numbered arrows.
    """
    dim = gel.dim
    ax = _get_axes(ax, dim)

    l2 = 0.5 * length
    for ii, edge in enumerate(gel.edges):
        cc = gel.coors[edge]
        centre = 0.5 * cc.sum(axis=0)

        vdir = (cc - centre)
        normalize_vectors(vdir)

        cc = l2 * vdir + centre
        draw_arrow(ax, cc, length=0.3*length, linewidth=3, color='b')

        if dim == 3:
            cx, cy, cz = centre
            ax.text(cx, cy, cz, ii,
                    color='b', fontsize=10, weight='light')

        else:
            cx, cy = centre
            ax.text(cx, cy, ii,
                    color='b', fontsize=10, weight='light')

    return ax
示例#3
0
    def test_normals(self):
        """
        Check orientations of surface normals on the reference elements.
        """
        import sfepy
        from sfepy.discrete import Integral
        from sfepy.discrete.fem import Mesh, FEDomain
        from sfepy.discrete.fem.poly_spaces import PolySpace
        from sfepy.discrete.fem.mappings import SurfaceMapping
        from sfepy.linalg import normalize_vectors

        ok = True

        for geom in ['2_3', '2_4', '3_4', '3_8']:
            mesh = Mesh.from_file('meshes/elements/%s_1.mesh' % geom,
                                  prefix_dir=sfepy.data_dir)
            domain = FEDomain('domain', mesh)
            surface = domain.create_region('Surface', 'vertices of surface',
                                           'facet')
            domain.create_surface_group(surface)

            sd = domain.surface_groups[surface.name]

            coors = domain.get_mesh_coors()
            gel = domain.geom_els[geom].surface_facet
            ps = PolySpace.any_from_args('aux', gel, 1)

            mapping = SurfaceMapping(coors, sd.get_connectivity(), ps)

            integral = Integral('i', order=1)
            vals, weights = integral.get_qp(gel.name)

            # Evaluate just in the first quadrature point...
            geo = mapping.get_mapping(vals[:1], weights[:1])

            expected = expected_normals[geom].copy()
            normalize_vectors(expected)

            _ok = nm.allclose(expected,
                              geo.normal[:, 0, :, 0],
                              rtol=0.0,
                              atol=1e-14)
            self.report('%s: %s' % (geom, _ok))

            if not _ok:
                self.report('expected:')
                self.report(expected)
                self.report('actual:')
                self.report(geo.normal[:, 0, :, 0])

            ok = ok and _ok

        return ok
示例#4
0
    def test_normals(self):
        """
        Check orientations of surface normals on the reference elements.
        """
        import sfepy
        from sfepy.discrete import Integral
        from sfepy.discrete.fem import Mesh, FEDomain
        from sfepy.discrete.fem.poly_spaces import PolySpace
        from sfepy.discrete.fem.mappings import SurfaceMapping
        from sfepy.linalg import normalize_vectors

        ok = True

        for geom in ['2_3', '2_4', '3_4', '3_8']:
            mesh = Mesh.from_file('meshes/elements/%s_1.mesh' % geom,
                                  prefix_dir=sfepy.data_dir)
            domain = FEDomain('domain', mesh)
            surface = domain.create_region('Surface', 'vertices of surface',
                                           'facet')
            domain.create_surface_group(surface)

            sd = domain.surface_groups[surface.name]

            coors = domain.get_mesh_coors()
            gel = domain.geom_els[geom].surface_facet
            ps = PolySpace.any_from_args('aux', gel, 1)

            mapping = SurfaceMapping(coors, sd.get_connectivity(), ps)

            integral = Integral('i', order=1)
            vals, weights = integral.get_qp(gel.name)

            # Evaluate just in the first quadrature point...
            geo = mapping.get_mapping(vals[:1], weights[:1])

            expected = expected_normals[geom].copy()
            normalize_vectors(expected)

            _ok = nm.allclose(expected, geo.normal[:, 0, :, 0],
                              rtol=0.0, atol=1e-14)
            self.report('%s: %s' % (geom, _ok))

            if not _ok:
                self.report('expected:')
                self.report(expected)
                self.report('actual:')
                self.report(geo.normal[:, 0, :, 0])

            ok = ok and _ok

        return ok
示例#5
0
文件: utils.py 项目: Nasrollah/sfepy
def compute_nodal_edge_dirs(nodes, region, field, return_imap=False):
    """
    Nodal edge directions are computed by simple averaging of direction vectors
    of edges a node is contained in. Edges are assumed to be straight and a
    node must be on a single edge (a border node) or shared by exactly two
    edges.
    """
    coors = region.domain.mesh.coors
    dim = coors.shape[1]

    graph = region.get_edge_graph()

    imap = prepare_remap(nodes, nodes.max() + 1)
    mask = nm.zeros_like(imap)

    try:
        paths = get_edge_paths(graph, mask)

    except ValueError:
        raise ValueError('more than 2 edges sharing a vertex in region %s!'
                         % region.name)

    # All nodes must have an edge direction.
    if not nm.all(mask[nodes]):
        raise ValueError('region %s has not complete edges!' % region.name)

    edge_dirs = nm.zeros((nodes.shape[0], dim), dtype=nm.float64)
    for path in paths:
        pcoors = coors[path]

        edirs = nm.diff(pcoors, axis=0)
        la.normalize_vectors(edirs, eps=1e-12)

        im = imap[nm.c_[path[:-1], path[1:]]]
        for ii, edir in enumerate(edirs):
            edge_dirs[im[ii]] += edir

    la.normalize_vectors(edge_dirs, eps=1e-12)

    if return_imap:
        return edge_dirs, imap

    else:
        return edge_dirs
示例#6
0
def compute_nodal_edge_dirs(nodes, region, field, return_imap=False):
    """
    Nodal edge directions are computed by simple averaging of direction vectors
    of edges a node is contained in. Edges are assumed to be straight and a
    node must be on a single edge (a border node) or shared by exactly two
    edges.
    """
    coors = region.domain.mesh.coors
    dim = coors.shape[1]

    graph = region.get_edge_graph()

    imap = prepare_remap(nodes, nodes.max() + 1)
    mask = nm.zeros_like(imap)

    try:
        paths = get_edge_paths(graph, mask)

    except ValueError:
        raise ValueError('more than 2 edges sharing a vertex in region %s!'
                         % region.name)

    # All nodes must have an edge direction.
    if not nm.all(mask[nodes]):
        raise ValueError('region %s has not complete edges!' % region.name)

    edge_dirs = nm.zeros((nodes.shape[0], dim), dtype=nm.float64)
    for path in paths:
        pcoors = coors[path]

        edirs = nm.diff(pcoors, axis=0)
        la.normalize_vectors(edirs, eps=1e-12)

        im = imap[nm.c_[path[:-1], path[1:]]]
        for ii, edir in enumerate(edirs):
            edge_dirs[im[ii]] += edir

    la.normalize_vectors(edge_dirs, eps=1e-12)

    if return_imap:
        return edge_dirs, imap

    else:
        return edge_dirs
示例#7
0
def plot_edges(ax, gel, length):
    """
    Plot edges of a geometry element as numbered arrows.
    """
    dim = gel.dim
    ax = _get_axes(ax, dim)

    if gel.edges is None: return ax

    l2 = 0.5 * length
    for ii, edge in enumerate(gel.edges):
        cc = gel.coors[edge]
        centre = 0.5 * cc.sum(axis=0)

        vdir = (cc - centre)
        normalize_vectors(vdir)

        cc = l2 * vdir + centre
        draw_arrow(ax, cc, length=0.3*length, linewidth=3, color='b')

        ax.text(*centre, s=ii,
                color='b', fontsize=10, weight='light')

    return ax