def test_three_clusters(bisecting_strategy): """Tries to perform bisect k-means for three clusters to check if splitting data is performed correctly. """ # X = np.array([[1, 2], [1, 4], [1, 0], # [10, 2], [10, 4], [10, 0], # [10, 6], [10, 8], [10, 10]]) # X[0][1] swapped with X[1][1] intentionally for checking labeling X = np.array([[1, 2], [10, 4], [1, 0], [10, 2], [1, 4], [10, 0], [10, 6], [10, 8], [10, 10]]) bisect_means = BisectingKMeans(n_clusters=3, random_state=0, bisecting_strategy=bisecting_strategy) bisect_means.fit(X) expected_centers = [[10, 2], [10, 8], [1, 2]] expected_predict = [2, 0] expected_labels = [2, 0, 2, 0, 2, 0, 1, 1, 1] assert_allclose(expected_centers, bisect_means.cluster_centers_) assert_array_equal(expected_predict, bisect_means.predict([[0, 0], [12, 3]])) assert_array_equal(expected_labels, bisect_means.labels_)
def test_wrong_params(param, match): """Test Exceptions at check_params function.""" rng = np.random.RandomState(0) X = rng.rand(5, 2) with pytest.raises(ValueError, match=match): bisect_means = BisectingKMeans(n_clusters=3, **param) bisect_means.fit(X)
def test_bisecting_kmeans_update_centroids(): bisection_kmeans = BisectingKMeans(max_n_clusters) target_label = 2 bisection_kmeans.centroids = np.array([[2], [5], [8.33]]) sub_centroids = np.array([[7.5], [10]]) bisection_kmeans._update_centroids(sub_centroids, target_label) assert_array_equal(bisection_kmeans.centroids, np.array([[2], [5], [7.5], [10]]))
def test_bisecting_kmeans_update_labels(sub_labels, expected_labels): bisecting_kmeans = BisectingKMeans(max_n_clusters) bisecting_kmeans.labels_ = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) new_label = 3 target_label_indices = np.array([6, 7, 8]) bisecting_kmeans._update_labels(sub_labels, target_label_indices, new_label) assert_array_equal(bisecting_kmeans.labels_, expected_labels)
def test_n_clusters(n_clusters): """Test if resulting labels are in range [0, n_clusters - 1].""" rng = np.random.RandomState(0) X = rng.rand(10, 2) bisect_means = BisectingKMeans(n_clusters=n_clusters, random_state=0) bisect_means.fit(X) assert_array_equal(np.unique(bisect_means.labels_), np.arange(n_clusters))
def test_dtype_preserved(is_sparse, global_dtype): """Check that centers dtype is the same as input data dtype.""" rng = np.random.RandomState(0) X = rng.rand(10, 2).astype(global_dtype, copy=False) if is_sparse: X[X < 0.8] = 0 X = sp.csr_matrix(X) km = BisectingKMeans(n_clusters=3, random_state=0) km.fit(X) assert km.cluster_centers_.dtype == global_dtype
def test_one_cluster(): """Test single cluster.""" X = np.array([[1, 2], [10, 2], [10, 8]]) bisect_means = BisectingKMeans(n_clusters=1, random_state=0).fit(X) # All labels from fit or predict should be equal 0 assert all(bisect_means.labels_ == 0) assert all(bisect_means.predict(X) == 0) assert_allclose(bisect_means.cluster_centers_, X.mean(axis=0).reshape(1, -1))
def test_fit_predict(is_sparse): """Check if labels from fit(X) method are same as from fit(X).predict(X).""" rng = np.random.RandomState(0) X = rng.rand(10, 2) if is_sparse: X[X < 0.8] = 0 X = sp.csr_matrix(X) bisect_means = BisectingKMeans(n_clusters=3, random_state=0) bisect_means.fit(X) assert_array_equal(bisect_means.labels_, bisect_means.predict(X))
def test_float32_float64_equivalence(is_sparse): """Check that the results are the same between float32 and float64.""" rng = np.random.RandomState(0) X = rng.rand(10, 2) if is_sparse: X[X < 0.8] = 0 X = sp.csr_matrix(X) km64 = BisectingKMeans(n_clusters=3, random_state=0).fit(X) km32 = BisectingKMeans(n_clusters=3, random_state=0).fit(X.astype(np.float32)) assert_allclose(km32.cluster_centers_, km64.cluster_centers_) assert_array_equal(km32.labels_, km64.labels_)
def test_predict_diff_dimention_data(): bkmeans = BisectingKMeans(max_n_clusters=3) X = np.array([[1], [2], [3], [4], [5], [6], [7], [8], [10]]) bkmeans.fit(X) with pytest.raises(ValueError): bkmeans.predict(np.array([[1,2]]))
def test_predict(max_n_clusters): X, _ = make_blobs(n_samples=500, n_features=10, centers=max_n_clusters, random_state=0) clf = BisectingKMeans(max_n_clusters) clf.fit(X) labels = clf.labels_ # re-predict labels for training set using predict pred = clf.predict(X) assert_array_equal(pred, labels) # predict centroid labels (this should pass once fit is implemented) pred = clf.predict(clf.centroids) assert_array_equal(pred, np.arange(clf.max_n_clusters))
def test_sparse(): """Test Bisecting K-Means with sparse data. Checks if labels and centers are the same between dense and sparse. """ rng = np.random.RandomState(0) X = rng.rand(20, 2) X[X < 0.8] = 0 X_csr = sp.csr_matrix(X) bisect_means = BisectingKMeans(n_clusters=3, random_state=0) bisect_means.fit(X_csr) sparse_centers = bisect_means.cluster_centers_ bisect_means.fit(X) normal_centers = bisect_means.cluster_centers_ # Check if results is the same for dense and sparse data assert_allclose(normal_centers, sparse_centers, atol=1e-8)
def test_euclidean_distance(max_n_clusters): clf = BisectingKMeans(max_n_clusters) distance = clf._euclidean_distance([1, 0, 1], [0, 1, 1]) assert distance == 2**(.5)
def test_next_cluster_to_split(scores): bisectingKMeans = BisectingKMeans(max_n_clusters=2) bisectingKMeans.scores = np.array(scores) assert_equal(bisectingKMeans._next_cluster_to_split(), scores.index(max(scores)))
def test_predict_not_fitted(): bkmeans = BisectingKMeans(max_n_clusters=2) X = np.zeros([3]) with pytest.raises(NotFittedError): bkmeans.predict(X)
def test_max_n_clusters_greater_than_input(): bkmeans = BisectingKMeans(max_n_clusters=10) X = np.zeros([3]) with pytest.raises(ValueError): bkmeans.fit(X)
# %% # BisectingKMeans: divide and cluster # ----------------------------------- # The new class :class:`cluster.BisectingKMeans` is a variant of :class:`KMeans`, using # divisive hierarchical clustering. Instead of creating all centroids at once, centroids # are picked progressively based on a previous clustering: a cluster is split into two # new clusters repeatedly until the target number of clusters is reached, giving a # hierarchical structure to the clustering. from sklearn.datasets import make_blobs from sklearn.cluster import KMeans, BisectingKMeans import matplotlib.pyplot as plt X, _ = make_blobs(n_samples=1000, centers=2, random_state=0) km = KMeans(n_clusters=5, random_state=0).fit(X) bisect_km = BisectingKMeans(n_clusters=5, random_state=0).fit(X) fig, ax = plt.subplots(1, 2, figsize=(10, 5)) ax[0].scatter(X[:, 0], X[:, 1], s=10, c=km.labels_) ax[0].scatter(km.cluster_centers_[:, 0], km.cluster_centers_[:, 1], s=20, c="r") ax[0].set_title("KMeans") ax[1].scatter(X[:, 0], X[:, 1], s=10, c=bisect_km.labels_) ax[1].scatter(bisect_km.cluster_centers_[:, 0], bisect_km.cluster_centers_[:, 1], s=20, c="r") _ = ax[1].set_title("BisectingKMeans")