def test_predict_diff_dimention_data():
    bkmeans = BisectingKMeans(max_n_clusters=3)
    X = np.array([[1], [2], [3],
                  [4], [5], [6],
                  [7], [8], [10]])

    bkmeans.fit(X)
    with pytest.raises(ValueError):
        bkmeans.predict(np.array([[1,2]]))
def test_predict(max_n_clusters):
    X, _ = make_blobs(n_samples=500, n_features=10, centers=max_n_clusters, random_state=0)
    clf = BisectingKMeans(max_n_clusters)
    clf.fit(X)
    labels = clf.labels_

    # re-predict labels for training set using predict
    pred = clf.predict(X)
    assert_array_equal(pred, labels)

    # predict centroid labels (this should pass once fit is implemented)
    pred = clf.predict(clf.centroids)
    assert_array_equal(pred, np.arange(clf.max_n_clusters))
示例#3
0
def test_three_clusters(bisecting_strategy):
    """Tries to perform bisect k-means for three clusters to check
    if splitting data is performed correctly.
    """

    # X = np.array([[1, 2], [1, 4], [1, 0],
    #               [10, 2], [10, 4], [10, 0],
    #               [10, 6], [10, 8], [10, 10]])

    # X[0][1] swapped with X[1][1] intentionally for checking labeling
    X = np.array([[1, 2], [10, 4], [1, 0], [10, 2], [1, 4], [10, 0], [10, 6],
                  [10, 8], [10, 10]])
    bisect_means = BisectingKMeans(n_clusters=3,
                                   random_state=0,
                                   bisecting_strategy=bisecting_strategy)
    bisect_means.fit(X)

    expected_centers = [[10, 2], [10, 8], [1, 2]]
    expected_predict = [2, 0]
    expected_labels = [2, 0, 2, 0, 2, 0, 1, 1, 1]

    assert_allclose(expected_centers, bisect_means.cluster_centers_)
    assert_array_equal(expected_predict, bisect_means.predict([[0, 0], [12,
                                                                        3]]))
    assert_array_equal(expected_labels, bisect_means.labels_)
示例#4
0
def test_one_cluster():
    """Test single cluster."""

    X = np.array([[1, 2], [10, 2], [10, 8]])

    bisect_means = BisectingKMeans(n_clusters=1, random_state=0).fit(X)

    # All labels from fit or predict should be equal 0
    assert all(bisect_means.labels_ == 0)
    assert all(bisect_means.predict(X) == 0)

    assert_allclose(bisect_means.cluster_centers_,
                    X.mean(axis=0).reshape(1, -1))
示例#5
0
def test_fit_predict(is_sparse):
    """Check if labels from fit(X) method are same as from fit(X).predict(X)."""
    rng = np.random.RandomState(0)

    X = rng.rand(10, 2)

    if is_sparse:
        X[X < 0.8] = 0
        X = sp.csr_matrix(X)

    bisect_means = BisectingKMeans(n_clusters=3, random_state=0)
    bisect_means.fit(X)

    assert_array_equal(bisect_means.labels_, bisect_means.predict(X))
def test_predict_not_fitted():
    bkmeans = BisectingKMeans(max_n_clusters=2)
    X = np.zeros([3])
    with pytest.raises(NotFittedError):
        bkmeans.predict(X)