def save_evoked_to_blender(mri_subject, events, args, evoked=None): fol = op.join(MMVT_DIR, mri_subject, 'eeg') utils.make_dir(fol) if '{cond}' in meg.EVO: for event_ind, event_id in enumerate(events.keys()): if evoked is None: evo = mne.read_evokeds(meg.get_cond_fname(meg.EVO, event_id)) else: evo = evoked[event_id] if event_ind == 0: ch_names = np.array(evo[0].ch_names) dt = np.diff(evo[0].times[:2])[0] data = np.zeros((evo[0].data.shape[0], evo[0].data.shape[1], 2)) data[:, :, event_ind] = evo[0].data else: if evoked is None: evoked = mne.read_evokeds(meg.EVO) data = evoked[0].data data = data[..., np.newaxis] ch_names = np.array(evoked[0].ch_names) dt = np.diff(evoked[0].times[:2])[0] if 'Event' in ch_names: event_ind = np.where(ch_names == 'Event')[0] ch_names = np.delete(ch_names, event_ind) data = np.delete(data, event_ind, 0) if args.normalize_evoked: data_max, data_min = utils.get_data_max_min(data, args.norm_by_percentile, args.norm_percs) max_abs = utils.get_max_abs(data_max, data_min) data = data / max_abs np.save(op.join(fol, 'eeg_data.npy'), data) np.savez(op.join(fol, 'eeg_data_meta.npz'), names=ch_names, conditions=list(events.keys()), dt=dt) return True
def calc_connections_colors(data, labels, hemis, args): # stat, conditions, w, threshold=0, threshold_percentile=0, color_map='jet', # norm_by_percentile=True, norm_percs=(1, 99), symetric_colors=True): M = data.shape[0] W = data.shape[2] if args.windows == 0 else args.windows L = int((M * M + M) / 2 - M) con_indices = np.zeros((L, 2)) con_values = np.zeros((L, W, len(args.conditions))) con_names = [None] * L con_type = np.zeros((L)) for cond in range(len(args.conditions)): for w in range(W): for ind, (i, j) in enumerate(utils.lower_rec_indices(M)): if W > 1 and data.ndim == 4: con_values[ind, w, cond] = data[i, j, w, cond] elif data.ndim > 2: con_values[ind, w, cond] = data[i, j, cond] else: con_values[ind, w, cond] = data[i, j] if len(args.conditions) > 1: stat_data = utils.calc_stat_data(con_values, args.stat) else: stat_data = np.squeeze(con_values) for ind, (i, j) in enumerate(utils.lower_rec_indices(M)): con_indices[ind, :] = [i, j] con_names[ind] = '{}-{}'.format(labels[i], labels[j]) con_type[ind] = HEMIS_WITHIN if hemis[i] == hemis[j] else HEMIS_BETWEEN con_indices = con_indices.astype(np.int) con_names = np.array(con_names) data_max, data_min = utils.get_data_max_min(stat_data, args.norm_by_percentile, args.norm_percs) data_minmax = max(map(abs, [data_max, data_min])) if args.threshold_percentile > 0: args.threshold = np.percentile(np.abs(stat_data), args.threshold_percentile) if args.threshold > data_minmax: raise Exception('threshold > abs(max(data)) ({})'.format(data_minmax)) if args.threshold >= 0: indices = np.where(np.abs(stat_data) > args.threshold)[0] # con_colors = con_colors[indices] con_indices = con_indices[indices] con_names = con_names[indices] con_values = con_values[indices] con_type = con_type[indices] stat_data = stat_data[indices] con_values = np.squeeze(con_values) if args.data_max == 0 and args.data_min == 0: if args.symetric_colors and np.sign(data_max) != np.sign(data_min): data_max, data_min = data_minmax, -data_minmax else: data_max, data_min = args.data_max, args.data_min print('data_max: {}, data_min: {}'.format(data_max, data_min)) con_colors = utils.mat_to_colors(stat_data, data_min, data_max, args.color_map) print(len(con_names)) return con_colors, con_indices, con_names, con_values, con_type, data_max, data_min
def calc_connections_colors(data, labels, hemis, stat, w, threshold=0, threshold_percentile=0, color_map='jet', norm_by_percentile=True, norm_percs=(1, 99)): M = data.shape[0] W = data.shape[2] if w == 0 else w L = int((M * M + M) / 2 - M) con_indices = np.zeros((L, 2)) con_values = np.zeros((L, W, 2)) con_names = [None] * L con_type = np.zeros((L)) axis = data.ndim - 1 coh_stat = utils.calc_stat_data(data, stat, axis=axis) x = coh_stat.ravel() data_max, data_min = utils.get_data_max_min(x, norm_by_percentile, norm_percs) data_minmax = max(map(abs, [data_max, data_min])) for cond in range(2): for w in range(W): for ind, (i, j) in enumerate(utils.lower_rec_indices(M)): if W > 1: con_values[ind, w, cond] = data[i, j, w, cond] else: con_values[ind, w, cond] = data[i, j, cond] stat_data = utils.calc_stat_data(con_values, stat) con_colors = utils.mat_to_colors(stat_data, -data_minmax, data_minmax, color_map) for ind, (i, j) in enumerate(utils.lower_rec_indices(M)): con_indices[ind, :] = [i, j] con_names[ind] = '{}-{}'.format(labels[i], labels[j]) con_type[ind] = HEMIS_WITHIN if hemis[i] == hemis[j] else HEMIS_BETWEEN con_indices = con_indices.astype(np.int) con_names = np.array(con_names) if threshold_percentile > 0: threshold = np.percentile(np.abs(stat_data), threshold_percentile) if threshold > 0: indices = np.where(np.abs(stat_data) >= threshold)[0] con_colors = con_colors[indices] con_indices = con_indices[indices] con_names = con_names[indices] con_values = con_values[indices] con_type = con_type[indices] print(len(con_names)) return con_colors, con_indices, con_names, con_values, con_type
def save_evoked_to_blender(mri_subject, events, args, evoked=None): fol = op.join(MMVT_DIR, mri_subject, 'eeg') utils.make_dir(fol) if '{cond}' in meg.EVO: for event_ind, event_id in enumerate(events.keys()): if evoked is None: evo = mne.read_evokeds(meg.get_cond_fname(meg.EVO, event_id)) else: evo = evoked[event_id] if event_ind == 0: ch_names = np.array(evo[0].ch_names) dt = np.diff(evo[0].times[:2])[0] data = np.zeros( (evo[0].data.shape[0], evo[0].data.shape[1], 2)) data[:, :, event_ind] = evo[0].data else: if evoked is None: evoked = mne.read_evokeds(meg.EVO) data = evoked[0].data data = data[..., np.newaxis] ch_names = np.array(evoked[0].ch_names) dt = np.diff(evoked[0].times[:2])[0] if 'Event' in ch_names: event_ind = np.where(ch_names == 'Event')[0] ch_names = np.delete(ch_names, event_ind) data = np.delete(data, event_ind, 0) data_max, data_min = utils.get_data_max_min(data, args.norm_by_percentile, args.norm_percs) max_abs = utils.get_max_abs(data_max, data_min) if args.normalize_evoked: data = data / max_abs np.save(op.join(fol, 'eeg_data.npy'), data) np.savez(op.join(fol, 'eeg_data_meta.npz'), names=ch_names, conditions=list(events.keys()), dt=dt, minmax=(-max_abs, max_abs)) return True