def setup_class(cls): res2 = Holder() #> p = pwr.t.test(d=1,n=30,sig.level=0.05,type="one.sample",alternative="greater") #> cat_items(p, prefix='tt_power1_1g.') res2.n = 30 res2.d = 1 res2.sig_level = 0.05 res2.power = 0.999892010204909 res2.alternative = 'greater' res2.note = 'NULL' res2.method = 'One-sample t test power calculation' cls.res2 = res2 cls.kwds = {'effect_size': res2.d, 'nobs': res2.n, 'alpha': res2.sig_level, 'power': res2.power} cls.kwds_extra = {'alternative': 'larger'} cls.cls = smp.TTestPower
def setup_class(cls): res2 = Holder() #> p = pwr.t2n.test(d=0.1,n1=20, n2=30,sig.level=0.05,alternative="two.sided") #> cat_items(p, "res2.") res2.n1 = 20 res2.n2 = 30 res2.d = 0.1 res2.sig_level = 0.05 res2.power = 0.0633081832564667 res2.alternative = 'two.sided' res2.method = 't test power calculation' cls.res2 = res2 cls.kwds = {'effect_size': res2.d, 'nobs1': res2.n1, 'alpha': res2.sig_level, 'power':res2.power, 'ratio': 1.5} cls.kwds_extra = {'alternative': 'two-sided'} cls.cls = smp.TTestIndPower
def setup_class(cls): res2 = Holder() #> p = pwr.t2n.test(d=0.1,n1=20, n2=30,sig.level=0.05,alternative="greater") #> cat_items(p, "res2.") res2.n1 = 20 res2.n2 = 30 res2.d = 0.1 res2.sig_level = 0.05 res2.power = 0.09623589080917805 res2.alternative = 'greater' res2.method = 't test power calculation' cls.res2 = res2 cls.kwds = {'effect_size': res2.d, 'nobs1': res2.n1, 'alpha': res2.sig_level, 'power':res2.power, 'ratio': 1.5} cls.kwds_extra = {'alternative': 'larger'} cls.cls = smp.TTestIndPower
def setup_class(cls): res2 = Holder() #> p = pwr.t.test(d=1,n=30,sig.level=0.05,type="two.sample",alternative="greater") #> cat_items(p, prefix='tt_power2_1g.') res2.n = 30 res2.d = 1 res2.sig_level = 0.05 res2.power = 0.985459690251624 res2.alternative = 'greater' res2.note = 'n is number in *each* group' res2.method = 'Two-sample t test power calculation' cls.res2 = res2 cls.kwds = {'effect_size': res2.d, 'nobs1': res2.n, 'alpha': res2.sig_level, 'power':res2.power, 'ratio': 1} cls.kwds_extra = {'alternative': 'larger'} cls.cls = smp.TTestIndPower
def setup_class(cls): res2 = Holder() #> p = pwr.t.test(d=0.01,n=30,sig.level=0.05,type="two.sample",alternative="greater") #> cat_items(p, "res2.") res2.n = 30 res2.d = 0.01 res2.sig_level = 0.05 res2.power = 0.0540740302835667 res2.alternative = 'greater' res2.note = 'n is number in *each* group' res2.method = 'Two-sample t test power calculation' cls.res2 = res2 cls.kwds = {'effect_size': res2.d, 'nobs1': res2.n, 'alpha': res2.sig_level, 'power':res2.power} cls.kwds_extra = {'alternative': 'larger'} cls.cls = smp.TTestIndPower
def setup_class(cls): res2 = Holder() #> p = pwr.t.test(d=0.1,n=20,sig.level=0.05,type="two.sample",alternative="two.sided") #> cat_items(p, "res2.") res2.n = 20 res2.d = 0.1 res2.sig_level = 0.05 res2.power = 0.06095912465411235 res2.alternative = 'two.sided' res2.note = 'n is number in *each* group' res2.method = 'Two-sample t test power calculation' cls.res2 = res2 cls.kwds = {'effect_size': res2.d, 'nobs1': res2.n, 'alpha': res2.sig_level, 'power': res2.power, 'ratio': 1} cls.kwds_extra = {} cls.cls = smp.TTestIndPower
def setup_class(cls): res2 = Holder() #> p = pwr.t.test(d=-0.2,n=20,sig.level=0.05,type="one.sample",alternative="less") #> cat_items(p, "res2.") res2.n = 20 res2.d = -0.2 res2.sig_level = 0.05 res2.power = 0.21707518167191 res2.alternative = 'less' res2.note = '''NULL''' res2.method = 'One-sample t test power calculation' cls.res2 = res2 cls.kwds = {'effect_size': res2.d, 'nobs': res2.n, 'alpha': res2.sig_level, 'power': res2.power} cls.kwds_extra = {'alternative': 'smaller'} cls.cls = smp.TTestPower
def setup_class(cls): res2 = Holder() #> p = pwr.t.test(d=0.05,n=20,sig.level=0.05,type="one.sample",alternative="greater") #> cat_items(p, "res2.") res2.n = 20 res2.d = 0.05 res2.sig_level = 0.05 res2.power = 0.0764888785042198 res2.alternative = 'greater' res2.note = '''NULL''' res2.method = 'One-sample t test power calculation' cls.res2 = res2 cls.kwds = {'effect_size': res2.d, 'nobs': res2.n, 'alpha': res2.sig_level, 'power': res2.power} cls.kwds_extra = {'alternative': 'larger'} cls.cls = smp.TTestPower
def __init__(self): #> p = pwr.t.test(d=1,n=30,sig.level=0.05,type="two.sample",alternative="two.sided") #> cat_items(p, prefix='tt_power2_1.') res2 = Holder() res2.n = 30 res2.d = 1 res2.sig_level = 0.05 res2.power = 0.9995636009612725 res2.alternative = 'two.sided' res2.note = 'NULL' res2.method = 'One-sample t test power calculation' self.res2 = res2 self.kwds = {'effect_size': res2.d, 'nobs': res2.n, 'alpha': res2.sig_level, 'power':res2.power} self.kwds_extra = {} self.cls = smp.TTestPower
def setup_class(cls): res2 = Holder() #> np = pwr.2p.test(h=0.01,n=80,sig.level=0.05,alternative="less") #> cat_items(np, "res2.") res2.h = 0.01 res2.n = 80 res2.sig_level = 0.05 res2.power = 0.0438089705093578 res2.alternative = 'less' res2.method = ('Difference of proportion power calculation for' + ' binomial distribution (arcsine transformation)') res2.note = 'same sample sizes' cls.res2 = res2 cls.kwds = {'effect_size': res2.h, 'nobs1': res2.n, 'alpha': res2.sig_level, 'power':res2.power, 'ratio': 1} cls.kwds_extra = {'alternative':'smaller'} cls.cls = smp.NormalIndPower
def setup_class(cls): res2 = Holder() #> p = pwr.t.test(d=0.2,n=20,sig.level=0.05,type="one.sample",alternative="two.sided") #> cat_items(p, "res2.") res2.n = 20 res2.d = 0.2 res2.sig_level = 0.05 res2.power = 0.1359562887679666 res2.alternative = 'two.sided' res2.note = '''NULL''' res2.method = 'One-sample t test power calculation' cls.res2 = res2 cls.kwds = {'effect_size': res2.d, 'nobs': res2.n, 'alpha': res2.sig_level, 'power':res2.power} cls.kwds_extra = {} cls.cls = smp.TTestPower
def setup_class(cls): # forcing one-sample by using ratio=0 res2 = Holder() #> np = pwr.norm.test(d=0.01,n=40,sig.level=0.05,alternative="less") #> cat_items(np, "res2.") res2.d = 0.01 res2.n = 40 res2.sig_level = 0.05 res2.power = 0.0438089705093578 res2.alternative = 'less' res2.method = 'Mean power calculation for normal distribution with known variance' cls.res2 = res2 cls.kwds = {'effect_size': res2.d, 'nobs1': res2.n, 'alpha': res2.sig_level, 'power':res2.power} # keyword for which we don't look for root: cls.kwds_extra = {'ratio': 0, 'alternative':'smaller'} cls.cls = smp.NormalIndPower
def setup_class(cls): # one example from test_gof, results_power res2 = Holder() res2.w = 0.1 res2.N = 5 res2.df = 4 res2.sig_level = 0.05 res2.power = 0.05246644635810126 res2.method = 'Chi squared power calculation' res2.note = 'N is the number of observations' cls.res2 = res2 cls.kwds = {'effect_size': res2.w, 'nobs': res2.N, 'alpha': res2.sig_level, 'power':res2.power} # keyword for which we don't look for root: # solving for n_bins doesn't work, will not be used in regular usage cls.kwds_extra = {'n_bins': res2.df + 1} cls.cls = smp.GofChisquarePower
def setup_class(cls): # forcing one-sample by using ratio=0 #> example from above # results copied not directly from R res2 = Holder() res2.n = 40 res2.d = 0.3 res2.sig_level = 0.05 res2.power = 0.475100870572638 res2.alternative = 'two.sided' res2.note = 'NULL' res2.method = 'two sample power calculation' cls.res2 = res2 cls.kwds = {'effect_size': res2.d, 'nobs1': res2.n, 'alpha': res2.sig_level, 'power':res2.power} # keyword for which we don't look for root: cls.kwds_extra = {'ratio': 0} cls.cls = smp.NormalIndPower
def __init__(self): res2 = Holder() #> rf = pwr.f2.test(u=5, v=19, f2=0.3**2, sig.level=0.1) #> cat_items(rf, "res2.") res2.u = 5 res2.v = 19 res2.f2 = 0.09 res2.sig_level = 0.1 res2.power = 0.235454222377575 res2.method = 'Multiple regression power calculation' self.res2 = res2 self.kwds = {'effect_size': np.sqrt(res2.f2), 'df_num': res2.v, 'df_denom': res2.u, 'alpha': res2.sig_level, 'power': res2.power} # keyword for which we don't look for root: # solving for n_bins doesn't work, will not be used in regular usage self.kwds_extra = {} self.cls = smp.FTestPower # precision for test_power self.decimal = 5
def setup_class(cls): #> example from above # results copied not directly from R res2 = Holder() res2.n = 80 res2.d = 0.3 res2.sig_level = 0.05 res2.power = 0.475100870572638 res2.alternative = 'two.sided' res2.note = 'NULL' res2.method = 'two sample power calculation' cls.res2 = res2 cls.kwds = { 'effect_size': res2.d, 'nobs1': res2.n, 'alpha': res2.sig_level, 'power': res2.power, 'ratio': 1 } cls.kwds_extra = {} cls.cls = smp.NormalIndPower
def __init__(self): res2 = Holder() #> p = pwr.t.test(d=0.2,n=20,sig.level=0.05,type="one.sample",alternative="less") #> cat_items(p, "res2.") res2.n = 20 res2.d = 0.2 res2.sig_level = 0.05 res2.power = 0.006063932667926375 res2.alternative = 'less' res2.note = '''NULL''' res2.method = 'One-sample t test power calculation' self.res2 = res2 self.kwds = { 'effect_size': res2.d, 'nobs': res2.n, 'alpha': res2.sig_level, 'power': res2.power } self.kwds_extra = {'alternative': 'smaller'} self.cls = smp.TTestPower
def __init__(self): #> p = pwr.t.test(d=1,n=30,sig.level=0.05,type="two.sample",alternative="two.sided") #> cat_items(p, prefix='tt_power2_1.') res2 = Holder() res2.n = 30 res2.d = 1 res2.sig_level = 0.05 res2.power = 0.967708258242517 res2.alternative = 'two.sided' res2.note = 'n is number in *each* group' res2.method = 'Two-sample t test power calculation' self.res2 = res2 self.kwds = { 'effect_size': res2.d, 'nobs1': res2.n, 'alpha': res2.sig_level, 'power': res2.power, 'ratio': 1 } self.kwds_extra = {} self.cls = smp.TTestIndPower
def test_ftest_power(): #equivalence ftest, ttest for alpha in [0.01, 0.05, 0.1, 0.20, 0.50]: res0 = smp.ttest_power(0.01, 200, alpha) res1 = smp.ftest_power(0.01, 199, 1, alpha=alpha, ncc=0) assert_almost_equal(res1, res0, decimal=6) #example from Gplus documentation F-test ANOVA #Total sample size:200 #Effect size "f":0.25 #Beta/alpha ratio:1 #Result: #Alpha:0.1592 #Power (1-beta):0.8408 #Critical F:1.4762 #Lambda: 12.50000 res1 = smp.ftest_anova_power(0.25, 200, 0.1592, k_groups=10) res0 = 0.8408 assert_almost_equal(res1, res0, decimal=4) # TODO: no class yet # examples agains R::pwr res2 = Holder() #> rf = pwr.f2.test(u=5, v=199, f2=0.1**2, sig.level=0.01) #> cat_items(rf, "res2.") res2.u = 5 res2.v = 199 res2.f2 = 0.01 res2.sig_level = 0.01 res2.power = 0.0494137732920332 res2.method = 'Multiple regression power calculation' res1 = smp.ftest_power(np.sqrt(res2.f2), res2.v, res2.u, alpha=res2.sig_level, ncc=1) assert_almost_equal(res1, res2.power, decimal=5) res2 = Holder() #> rf = pwr.f2.test(u=5, v=199, f2=0.3**2, sig.level=0.01) #> cat_items(rf, "res2.") res2.u = 5 res2.v = 199 res2.f2 = 0.09 res2.sig_level = 0.01 res2.power = 0.7967191006290872 res2.method = 'Multiple regression power calculation' res1 = smp.ftest_power(np.sqrt(res2.f2), res2.v, res2.u, alpha=res2.sig_level, ncc=1) assert_almost_equal(res1, res2.power, decimal=5) res2 = Holder() #> rf = pwr.f2.test(u=5, v=19, f2=0.3**2, sig.level=0.1) #> cat_items(rf, "res2.") res2.u = 5 res2.v = 19 res2.f2 = 0.09 res2.sig_level = 0.1 res2.power = 0.235454222377575 res2.method = 'Multiple regression power calculation' res1 = smp.ftest_power(np.sqrt(res2.f2), res2.v, res2.u, alpha=res2.sig_level, ncc=1) assert_almost_equal(res1, res2.power, decimal=5)