def setup_class(cls): res2 = Holder() #> rf = pwr.f2.test(u=5, v=19, f2=0.3**2, sig.level=0.1) #> cat_items(rf, "res2.") res2.u = 5 res2.v = 19 res2.f2 = 0.09 res2.sig_level = 0.1 res2.power = 0.235454222377575 res2.method = 'Multiple regression power calculation' cls.res2 = res2 cls.kwds = { 'effect_size': np.sqrt(res2.f2), 'df_num': res2.v, 'df_denom': res2.u, 'alpha': res2.sig_level, 'power': res2.power } # keyword for which we do not look for root: # solving for n_bins does not work, will not be used in regular usage cls.kwds_extra = {} cls.args_names = ['effect_size', 'df_num', 'df_denom', 'alpha'] cls.cls = smp.FTestPower # precision for test_power cls.decimal = 5
def __init__(self): res2 = Holder() #> rf = pwr.f2.test(u=5, v=19, f2=0.3**2, sig.level=0.1) #> cat_items(rf, "res2.") res2.u = 5 res2.v = 19 res2.f2 = 0.09 res2.sig_level = 0.1 res2.power = 0.235454222377575 res2.method = 'Multiple regression power calculation' self.res2 = res2 self.kwds = {'effect_size': np.sqrt(res2.f2), 'df_num': res2.v, 'df_denom': res2.u, 'alpha': res2.sig_level, 'power': res2.power} # keyword for which we don't look for root: # solving for n_bins doesn't work, will not be used in regular usage self.kwds_extra = {} self.cls = smp.FTestPower # precision for test_power self.decimal = 5
def test_ftest_power(): #equivalence ftest, ttest for alpha in [0.01, 0.05, 0.1, 0.20, 0.50]: res0 = smp.ttest_power(0.01, 200, alpha) res1 = smp.ftest_power(0.01, 199, 1, alpha=alpha, ncc=0) assert_almost_equal(res1, res0, decimal=6) #example from Gplus documentation F-test ANOVA #Total sample size:200 #Effect size "f":0.25 #Beta/alpha ratio:1 #Result: #Alpha:0.1592 #Power (1-beta):0.8408 #Critical F:1.4762 #Lambda: 12.50000 res1 = smp.ftest_anova_power(0.25, 200, 0.1592, k_groups=10) res0 = 0.8408 assert_almost_equal(res1, res0, decimal=4) # TODO: no class yet # examples agains R::pwr res2 = Holder() #> rf = pwr.f2.test(u=5, v=199, f2=0.1**2, sig.level=0.01) #> cat_items(rf, "res2.") res2.u = 5 res2.v = 199 res2.f2 = 0.01 res2.sig_level = 0.01 res2.power = 0.0494137732920332 res2.method = 'Multiple regression power calculation' res1 = smp.ftest_power(np.sqrt(res2.f2), res2.v, res2.u, alpha=res2.sig_level, ncc=1) assert_almost_equal(res1, res2.power, decimal=5) res2 = Holder() #> rf = pwr.f2.test(u=5, v=199, f2=0.3**2, sig.level=0.01) #> cat_items(rf, "res2.") res2.u = 5 res2.v = 199 res2.f2 = 0.09 res2.sig_level = 0.01 res2.power = 0.7967191006290872 res2.method = 'Multiple regression power calculation' res1 = smp.ftest_power(np.sqrt(res2.f2), res2.v, res2.u, alpha=res2.sig_level, ncc=1) assert_almost_equal(res1, res2.power, decimal=5) res2 = Holder() #> rf = pwr.f2.test(u=5, v=19, f2=0.3**2, sig.level=0.1) #> cat_items(rf, "res2.") res2.u = 5 res2.v = 19 res2.f2 = 0.09 res2.sig_level = 0.1 res2.power = 0.235454222377575 res2.method = 'Multiple regression power calculation' res1 = smp.ftest_power(np.sqrt(res2.f2), res2.v, res2.u, alpha=res2.sig_level, ncc=1) assert_almost_equal(res1, res2.power, decimal=5)