args = prs.parse_args()
    experiment_time = str(datetime.now()).split('.')[0]
    out_csv = 'outputs/2way-single-intersection/sarsa_lambda{}'.format(args.lamb)

    write_route_file('nets/2way-single-intersection/single-intersection-gen.rou.xml', 400000, 100000)

    env = SumoEnvironment(net_file='nets/2way-single-intersection/single-intersection.net.xml',
                          single_agent=True,
                          route_file=args.route,
                          out_csv_name=out_csv,
                          use_gui=args.gui,
                          num_seconds=args.seconds,
                          min_green=args.min_green,
                          max_green=args.max_green,
                          max_depart_delay=0,
                          time_to_load_vehicles=120,
                          phases=[
                            traci.trafficlight.Phase(32, "GGrrrrGGrrrr"),  
                            traci.trafficlight.Phase(2, "yyrrrryyrrrr"),
                            traci.trafficlight.Phase(32, "rrGrrrrrGrrr"),   
                            traci.trafficlight.Phase(2, "rryrrrrryrrr"),
                            traci.trafficlight.Phase(32, "rrrGGrrrrGGr"),   
                            traci.trafficlight.Phase(2, "rrryyrrrryyr"),
                            traci.trafficlight.Phase(32, "rrrrrGrrrrrG"), 
                            traci.trafficlight.Phase(2, "rrrrryrrrrry")
                            ])

    for run in range(1, args.runs+1):
        obs = env.reset()
        agent = TrueOnlineSarsaLambda(env.observation_space, env.action_space, alpha=args.alpha, gamma=args.gamma, epsilon=args.epsilon, fourier_order=21)
        
        done = False
示例#2
0
import numpy as np
from sumo_rl.environment.env import SumoEnvironment
import traci

if __name__ == '__main__':
    ray.init()

    register_env(
        "4x4grid",
        lambda _: SumoEnvironment(
            net_file='nets/4x4-Lucas/4x4.net.xml',
            route_file='nets/4x4-Lucas/4x4c1c2c1c2.rou.xml',
            out_csv_name='outputs/4x4grid/a3c-4x4grid',
            use_gui=False,
            num_seconds=80000,
            time_to_load_vehicles=120,
            max_depart_delay=0,
            phases=[
                traci.trafficlight.Phase(35, "GGGrrr"),  # north-south
                traci.trafficlight.Phase(2, "yyyrrr"),
                traci.trafficlight.Phase(35, "rrrGGG"),  # west-east
                traci.trafficlight.Phase(2, "rrryyy")
            ]))

    trainer = A3CTrainer(
        env="4x4grid",
        config={
            "multiagent": {
                "policy_graphs": {
                    '0':
                    (A3CTFPolicy, spaces.Box(low=np.zeros(10),
                                             high=np.ones(10)),
    args = prs.parse_args()
    experiment_time = str(datetime.now()).split('.')[0]
    out_csv = 'outputs/2way-single-intersection/{}_alpha{}_gamma{}_eps{}_decay{}_reward{}'.format(
        experiment_time, args.alpha, args.gamma, args.epsilon, args.decay,
        args.reward)

    env = SumoEnvironment(
        net_file='nets/2way-single-intersection/single-intersection.net.xml',
        route_file=args.route,
        out_csv_name=out_csv,
        use_gui=args.gui,
        num_seconds=args.seconds,
        min_green=args.min_green,
        max_green=args.max_green,
        max_depart_delay=0,
        time_to_load_vehicles=120,
        phases=[
            traci.trafficlight.Phase(32, "GGrrrrGGrrrr"),
            traci.trafficlight.Phase(2, "yyrrrryyrrrr"),
            traci.trafficlight.Phase(32, "rrGrrrrrGrrr"),
            traci.trafficlight.Phase(2, "rryrrrrryrrr"),
            traci.trafficlight.Phase(32, "rrrGGrrrrGGr"),
            traci.trafficlight.Phase(2, "rrryyrrrryyr"),
            traci.trafficlight.Phase(32, "rrrrrGrrrrrG"),
            traci.trafficlight.Phase(2, "rrrrryrrrrry")
        ])
    if args.reward == 'queue':
        env._compute_rewards = env._queue_average_reward
    else:
        env._compute_rewards = env._waiting_time_reward

    for run in range(1, args.runs + 1):
if __name__ == '__main__':

    experiment_time = str(datetime.now()).split('.')[0]
    out_csv = 'outputs/big-intersection/sarsa-f7'  #+ experiment_time

    env = SumoEnvironment(
        net_file='nets/big-intersection/big-intersection.net.xml',
        single_agent=True,
        route_file='nets/big-intersection/routes.rou.xml',
        out_csv_name=out_csv,
        use_gui=False,
        num_seconds=5400,
        yellow_time=4,
        min_green=5,
        max_green=60,
        max_depart_delay=300,
        time_to_load_vehicles=0,
        phases=[
            traci.trafficlight.Phase(30, "GGGGrrrrrrGGGGrrrrrr"),
            traci.trafficlight.Phase(4, "yyyyrrrrrryyyyrrrrrr"),
            traci.trafficlight.Phase(15, "rrrrGrrrrrrrrrGrrrrr"),
            traci.trafficlight.Phase(4, "rrrryrrrrrrrrryrrrrr"),
            traci.trafficlight.Phase(30, "rrrrrGGGGrrrrrrGGGGr"),
            traci.trafficlight.Phase(4, "rrrrryyyyrrrrrryyyyr"),
            traci.trafficlight.Phase(15, "rrrrrrrrrGrrrrrrrrrG"),
            traci.trafficlight.Phase(4, "rrrrrrrrryrrrrrrrrry")
        ])

    fixed_tl = False
    agent = TrueOnlineSarsaLambda(env.observation_space,
                                  env.action_space,
                                  alpha=0.000000001,
示例#5
0
    # if id == 'gneJ00':
    #     return 'gneJ00'
    # else:
    return 'offset_agent'


if __name__ == '__main__':
    ray.init()

    register_env(
        "2TLS", lambda _: SumoEnvironment(
            net_file=
            '/home/sonic/Desktop/sumo-rl-research-offset/sumo-rl-research/experiments/nets/Research/case04/intersection.net.xml',
            route_file=
            '/home/sonic/Desktop/sumo-rl-research-offset/sumo-rl-research/experiments/nets/Research/case04/intersection.rou.xml',
            out_csv_path='outputs/case04/',
            out_csv_name='DDPG',
            use_gui=False,
            num_seconds=12240612,
            time_to_load_vehicles=612,
            max_depart_delay=0))

    trainer = DDPGTrainer(
        env="2TLS",
        config={
            "multiagent": {
                "policy_graphs": {
                    'offset_agent': (DDPGTFPolicy,
                                     spaces.Box(low=np.zeros(2),
                                                high=np.array(['inf'] * 2)),
                                     spaces.Box(low=np.array([0, 0]),
import numpy as np
from sumo_rl.environment.env import SumoEnvironment
import traci


if __name__ == '__main__':

    env = SumoEnvironment(net_file='nets/2way-single-intersection/single-intersection.net.xml',
                                    route_file='nets/2way-single-intersection/single-intersection-vhvh.rou.xml',
                                    out_csv_name='outputs/2way-single-intersection/dqn-vhvh2-stable-mlp-bs',
                                    single_agent=True,
                                    use_gui=True,
                                    num_seconds=100000,
                                    time_to_load_vehicles=120,
                                    max_depart_delay=0,
                                    phases=[
                                        traci.trafficlight.Phase(32000, 32000, 32000, "GGrrrrGGrrrr"),  
                                        traci.trafficlight.Phase(2000, 2000, 2000, "yyrrrryyrrrr"),
                                        traci.trafficlight.Phase(32000, 32000, 32000, "rrGrrrrrGrrr"),   
                                        traci.trafficlight.Phase(2000, 2000, 2000, "rryrrrrryrrr"),
                                        traci.trafficlight.Phase(32000, 32000, 32000, "rrrGGrrrrGGr"),   
                                        traci.trafficlight.Phase(2000, 2000, 2000, "rrryyrrrryyr"),
                                        traci.trafficlight.Phase(32000, 32000, 32000, "rrrrrGrrrrrG"), 
                                        traci.trafficlight.Phase(2000, 2000, 2000, "rrrrryrrrrry")
                                        ])

    model = DQN(
        env=env,
        policy=MlpPolicy,
        learning_rate=1e-3,
        buffer_size=50000,
        exploration_fraction=0.1,

if __name__ == '__main__':
    ray.init()

    register_env(
        "2way-single-intersection", lambda _: SumoEnvironment(
            net_file=
            'nets/2way-single-intersection/single-intersection.net.xml',
            route_file=
            'nets/2way-single-intersection/single-intersection-gen.rou.xml',
            out_csv_name='outputs/2way-single-intersection/a3c-contexts',
            use_gui=False,
            num_seconds=100000,
            time_to_load_vehicles=120,
            max_depart_delay=0,
            phases=[
                traci.trafficlight.Phase(32000, "GGrrrrGGrrrr"),
                traci.trafficlight.Phase(2000, "yyrrrryyrrrr"),
                traci.trafficlight.Phase(32000, "rrGrrrrrGrrr"),
                traci.trafficlight.Phase(2000, "rryrrrrryrrr"),
                traci.trafficlight.Phase(32000, "rrrGGrrrrGGr"),
                traci.trafficlight.Phase(2000, "rrryyrrrryyr"),
                traci.trafficlight.Phase(32000, "rrrrrGrrrrrG"),
                traci.trafficlight.Phase(2000, "rrrrryrrrrry")
            ]))

    trainer = A3CAgent(
        env="2way-single-intersection",
        config={
            "multiagent": {
                "policy_graphs": {
示例#8
0
    return '0'


if __name__ == '__main__':
    ray.init()

    register_env(
        "2x2grid", lambda _: SumoEnvironment(
            net_file='nets/2x2grid/2x2.net.xml',
            route_file='nets/2x2grid/2x2.rou.xml',
            out_csv_name='outputs/2x2grid/a3c-contexts',
            use_gui=False,
            num_seconds=100000,
            time_to_load_vehicles=120,
            max_depart_delay=0,
            phases=[
                traci.trafficlight.Phase(32, "GGrrrrGGrrrr"),
                traci.trafficlight.Phase(2, "yyrrrryyrrrr"),
                traci.trafficlight.Phase(32, "rrGrrrrrGrrr"),
                traci.trafficlight.Phase(2, "rryrrrrryrrr"),
                traci.trafficlight.Phase(32, "rrrGGrrrrGGr"),
                traci.trafficlight.Phase(2, "rrryyrrrryyr"),
                traci.trafficlight.Phase(32, "rrrrrGrrrrrG"),
                traci.trafficlight.Phase(2, "rrrrryrrrrry")
            ]))

    trainer = A3CTrainer(
        env="2x2grid",
        config={
            "multiagent": {
                "policy_graphs": {
                    '0':
示例#9
0
if __name__ == '__main__':

    alpha = 0.1
    gamma = 0.99
    decay = 1
    runs = 1

    env = SumoEnvironment(
        net_file='nets/4x4-Lucas/4x4.net.xml',
        route_file='nets/4x4-Lucas/4x4c2.rou.xml',
        use_gui=True,
        num_seconds=40000,
        time_to_load_vehicles=300,
        max_depart_delay=0,
        phases=[
            traci.trafficlight.Phase(35000, 35000, 35000,
                                     "GGGrrr"),  # north-south
            traci.trafficlight.Phase(2000, 2000, 2000, "yyyrrr"),
            traci.trafficlight.Phase(35000, 35000, 35000,
                                     "rrrGGG"),  # west-east
            traci.trafficlight.Phase(2000, 2000, 2000, "rrryyy")
        ])

    for run in range(1, runs + 1):
        initial_states = env.reset()
        ql_agents = {
            ts:
            QLAgent(starting_state=env.encode(initial_states[ts]),
                    state_space=env.observation_space,
                    action_space=env.action_space,
示例#10
0
    100000)

# multiprocess environment
n_cpu = 2
env = SubprocVecEnv([
    lambda: SumoEnvironment(
        net_file='nets/2way-single-intersection/single-intersection.net.xml',
        route_file=
        'nets/2way-single-intersection/single-intersection-gen.rou.xml',
        out_csv_name=
        'outputs/2way-single-intersection/a2c-contexts-5s-vmvm-400k',
        single_agent=True,
        use_gui=False,
        num_seconds=400000,
        min_green=5,
        time_to_load_vehicles=120,
        max_depart_delay=0,
        phases=[
            traci.trafficlight.Phase(32000, "GGrrrrGGrrrr"),
            traci.trafficlight.Phase(2000, "yyrrrryyrrrr"),
            traci.trafficlight.Phase(32000, "rrGrrrrrGrrr"),
            traci.trafficlight.Phase(2000, "rryrrrrryrrr"),
            traci.trafficlight.Phase(32000, "rrrGGrrrrGGr"),
            traci.trafficlight.Phase(2000, "rrryyrrrryyr"),
            traci.trafficlight.Phase(32000, "rrrrrGrrrrrG"),
            traci.trafficlight.Phase(2000, "rrrrryrrrrry")
        ]) for i in range(n_cpu)
])

model = A2C(MlpPolicy,
            env,
            verbose=1,
示例#11
0
        return "4708662059"

    else:
        return "5870232715"


if __name__ == '__main__':
    ray.init()

    register_env(
        "2TLS", lambda _: SumoEnvironment(
            net_file=
            '/home/sonic/Desktop/sumo-rl-suwon/sumo-rl-suwon/experiments/nets/suwon/osm_rl.net.xml',
            route_file=
            '/home/sonic/Desktop/sumo-rl-suwon/sumo-rl-suwon/experiments/nets/suwon/osm.rou.xml',
            out_csv_path='outputs/Test4/',
            out_csv_name='DQN',
            use_gui=True,
            num_seconds=44000,
            time_to_load_vehicles=300,
            max_depart_delay=0))

    trainer = DQNTrainer(
        env="2TLS",
        config={
            "multiagent": {
                "policy_graphs": {
                    '3210041371': (DQNTFPolicy,
                                   spaces.Box(low=np.zeros(16),
                                              high=np.array(['inf'] * 16)),
                                   spaces.Discrete(2), {}),
示例#12
0
    args = prs.parse_args()
    ns = args.ns * 1000
    we = args.we * 1000
    experiment_time = str(datetime.now()).split('.')[0]
    out_csv = 'outputs/single-intersection/{}_alpha{}_gamma{}_eps{}_decay{}_reward{}'.format(
        experiment_time, args.alpha, args.gamma, args.epsilon, args.decay,
        args.reward)

    env = SumoEnvironment(
        net_file='nets/single-intersection/single-intersection.net.xml',
        route_file=args.route,
        out_csv_name=out_csv,
        use_gui=args.gui,
        num_seconds=args.seconds,
        min_green=args.min_green,
        max_green=args.max_green,
        max_depart_delay=0,
        phases=[
            traci.trafficlight.Phase(ns, ns, ns, "GGrr"),  # north-south
            traci.trafficlight.Phase(2000, 2000, 2000, "yyrr"),
            traci.trafficlight.Phase(we, we, we, "rrGG"),  # west-east
            traci.trafficlight.Phase(2000, 2000, 2000, "rryy")
        ])
    if args.reward == 'queue':
        env._compute_rewards = env._queue_average_reward
    else:
        env._compute_rewards = env._waiting_time_reward

    for run in range(1, args.runs + 1):
        initial_states = env.reset()
        ql_agents = {
    prs.add_argument("-s", dest="seconds", type=int, default=100000, required=False, help="Number of simulation seconds.\n")
    prs.add_argument("-r", dest="reward", type=str, default='wait', required=False, help="Reward function: [-r queue] for average queue reward or [-r wait] for waiting time reward.\n")
    prs.add_argument("-v", action="store_true", default=False, help="Print experience tuple.\n")
    prs.add_argument("-runs", dest="runs", type=int, default=1, help="Number of runs.\n")
    args = prs.parse_args()
    experiment_time = str(datetime.now()).split('.')[0]
    out_csv = '{}_alpha{}_gamma{}_eps{}_decay{}_reward{}'.format(experiment_time, args.alpha, args.gamma, args.epsilon, args.decay, args.reward)

    env = SumoEnvironment(net_file='nets/single-intersection/single-intersection.net.xml',
                          single_agent=True,
                          route_file=args.route,
                          out_csv_name=out_csv,
                          use_gui=args.gui,
                          num_seconds=args.seconds,
                          min_green=args.min_green,
                          max_green=args.max_green,
                          max_depart_delay=0,
                          phases=[
                            traci.trafficlight.Phase(args.ns, "GGrr"),   # north-south
                            traci.trafficlight.Phase(2, "yyrr"),
                            traci.trafficlight.Phase(args.we, "rrGG"),   # west-east
                            traci.trafficlight.Phase(2, "rryy")
                            ])

    env = VisualizationEnv(
        env=env, 
        episodic=False,
        features_names=['Phase 0', 'Phase 1', 'Elapsed time'] + ['Density lane ' + str(i) for i in range(4)] + ['Queue lane ' + str(i) for i in range(4)],
        actions_names=['Phase 0', 'Phase 1']
    )