gamma=args.gamma,
                        exploration_strategy=EpsilonGreedy(
                            initial_epsilon=args.epsilon,
                            min_epsilon=args.min_epsilon,
                            decay=args.decay))
            for ts in env.ts_ids
        }

        done = {'__all__': False}
        infos = []
        if args.fixed:
            while not done['__all__']:
                _, _, done, _ = env.step({})
        else:
            while not done['__all__']:
                actions = {ts: ql_agents[ts].act() for ts in ql_agents.keys()}

                s, r, done, _ = env.step(actions=actions)

                if args.v:
                    print('s=', env.radix_decode(ql_agents['t'].state), 'a=',
                          actions['t'], 's\'=', env.radix_encode(s['t']), 'r=',
                          r['t'])

                for agent_id in ql_agents.keys():
                    ql_agents[agent_id].learn(new_state=env.encode(
                        s[agent_id]),
                                              reward=r[agent_id])
        env.save_csv(out_csv, run)
        env.close()
        initial_states = env.reset()
        ql_agents = {ts: QLAgent(starting_state=env.encode(initial_states[ts]),
                                 state_space=env.observation_space,
                                 action_space=env.action_space,
                                 alpha=args.alpha,
                                 gamma=args.gamma,
                                 exploration_strategy=EpsilonGreedy(initial_epsilon=args.epsilon, min_epsilon=args.min_epsilon, decay=args.decay)) for ts in env.ts_ids}

        done = {'__all__': False}
        infos = []
        if args.fixed:
            while not done['__all__']:
                _, _, done, _ = env.step({})
        else:
            while not done['__all__']:
                actions = {ts: ql_agents[ts].act() for ts in ql_agents.keys()}

                s, r, done, _ = env.step(actions=actions)

                if args.v:
                    print('s=', env.radix_decode(ql_agents['t'].state), 'a=', actions['t'], 's\'=', env.radix_encode(s['t']), 'r=', r['t'])

                for agent_id in ql_agents.keys():
                    ql_agents[agent_id].learn(new_state=env.encode(s[agent_id]), reward=r[agent_id])
        env.save_csv()
        env.close()