示例#1
0
    def as_real_imag(self, deep=True, **hints):
        """
        Returns this function as a 2-tuple representing a complex number.

        Examples
        ========

        >>> from sympy import I
        >>> from sympy.abc import x
        >>> from sympy.functions import exp
        >>> exp(x).as_real_imag()
        (exp(re(x))*cos(im(x)), exp(re(x))*sin(im(x)))
        >>> exp(1).as_real_imag()
        (E, 0)
        >>> exp(I).as_real_imag()
        (cos(1), sin(1))
        >>> exp(1+I).as_real_imag()
        (E*cos(1), E*sin(1))

        See Also
        ========

        sympy.functions.elementary.complexes.re
        sympy.functions.elementary.complexes.im
        """
        re, im = self.args[0].as_real_imag()
        if deep:
            re = re.expand(deep, **hints)
            im = im.expand(deep, **hints)
        cos, sin = C.cos(im), C.sin(im)
        return (exp(re)*cos, exp(re)*sin)
示例#2
0
文件: hyperbolic.py 项目: ENuge/sympy
    def eval(cls, arg):
        arg = sympify(arg)

        if arg.is_Number:
            if arg is S.NaN:
                return S.NaN
            elif arg is S.Zero:
                return S.Zero
            elif arg is S.One:
                return S.Infinity
            elif arg is S.NegativeOne:
                return S.NegativeInfinity
            elif arg is S.Infinity:
                return -S.ImaginaryUnit * C.atan(arg)
            elif arg is S.NegativeInfinity:
                return S.ImaginaryUnit * C.atan(-arg)
            elif arg.is_negative:
                return -cls(-arg)
        else:
            if arg is S.ComplexInfinity:
                return S.NaN

            i_coeff = arg.as_coefficient(S.ImaginaryUnit)

            if i_coeff is not None:
                return S.ImaginaryUnit * C.atan(i_coeff)
            else:
                if _coeff_isneg(arg):
                    return -cls(-arg)
示例#3
0
 def _eval_expand_complex(self, deep=True, **hints):
     re, im = self.args[0].as_real_imag()
     if deep:
         re = re.expand(deep, **hints)
         im = im.expand(deep, **hints)
     cos, sin = C.cos(im), C.sin(im)
     return exp(re) * cos + S.ImaginaryUnit * exp(re) * sin
示例#4
0
    def as_real_imag(self, deep=True, **hints):
        """
        Returns this function as a complex coordinate.

        Examples
        ========

        >>> from sympy import I
        >>> from sympy.abc import x
        >>> from sympy.functions import log
        >>> log(x).as_real_imag()
        (log(Abs(x)), arg(x))
        >>> log(I).as_real_imag()
        (0, pi/2)
        >>> log(1+I).as_real_imag()
        (log(sqrt(2)), pi/4)
        >>> log(I*x).as_real_imag()
        (log(Abs(x)), arg(I*x))

        """
        if deep:
            abs = C.Abs(self.args[0].expand(deep, **hints))
            arg = C.arg(self.args[0].expand(deep, **hints))
        else:
            abs = C.Abs(self.args[0])
            arg = C.arg(self.args[0])
        if hints.get('log', False):  # Expand the log
            hints['complex'] = False
            return (log(abs).expand(deep, **hints), arg)
        else:
            return (log(abs), arg)
示例#5
0
 def vertices(self):
     points = []
     c, r, n = self
     v = 2*S.Pi/n
     for k in xrange(0, n):
         points.append( Point(c[0] + r*C.cos(k*v), c[1] + r*C.sin(k*v)) )
     return points
示例#6
0
    def vertices(self):
        """The vertices of the regular polygon.

        Returns
        -------
        vertices : list
            Each vertex is a Point.

        See Also
        --------
        Point

        Examples
        --------
        >>> from sympy.geometry import RegularPolygon, Point
        >>> rp = RegularPolygon(Point(0, 0), 5, 4)
        >>> rp.vertices
        [Point(5, 0), Point(0, 5), Point(-5, 0), Point(0, -5)]

        """
        points = []
        c, r, n = self
        v = 2*S.Pi/n
        for k in xrange(0, n):
            points.append(Point(c[0] + r*C.cos(k*v), c[1] + r*C.sin(k*v)))
        return points
示例#7
0
    def arbitrary_point(self, parameter_name='t'):
        """A parametric point on the ellipse.

        Parameters
        ----------
        parameter_name : str, optional
            Default value is 't'.

        Returns
        -------
        arbitrary_point : Point

        See Also
        --------
        Point

        Examples
        --------
        >>> from sympy import Point, Ellipse
        >>> e1 = Ellipse(Point(0, 0), 3, 2)
        >>> e1.arbitrary_point()
        Point(3*cos(t), 2*sin(t))

        """
        t = C.Symbol(parameter_name, real=True)
        return Point(self.center[0] + self.hradius*C.cos(t),
                self.center[1] + self.vradius*C.sin(t))
示例#8
0
文件: monomials.py 项目: AALEKH/sympy
def monomial_count(V, N):
    r"""
    Computes the number of monomials.

    The number of monomials is given by the following formula:

    .. math::

        \frac{(\#V + N)!}{\#V! N!}

    where `N` is a total degree and `V` is a set of variables.

    Examples
    ========

    >>> from sympy.polys.monomials import itermonomials, monomial_count
    >>> from sympy.polys.orderings import monomial_key
    >>> from sympy.abc import x, y

    >>> monomial_count(2, 2)
    6

    >>> M = itermonomials([x, y], 2)

    >>> sorted(M, key=monomial_key('grlex', [y, x]))
    [1, x, y, x**2, x*y, y**2]
    >>> len(M)
    6

    """
    return C.factorial(V + N) / C.factorial(V) / C.factorial(N)
示例#9
0
文件: ellipse.py 项目: Kimay/sympy
    def arbitrary_point(self, parameter='t'):
        """A parameterized point on the ellipse.

        Parameters
        ----------
        parameter : str, optional
            Default value is 't'.

        Returns
        -------
        arbitrary_point : Point

        Raises
        ------
        ValueError
            When `parameter` already appears in the functions.

        See Also
        --------
        Point

        Examples
        --------
        >>> from sympy import Point, Ellipse
        >>> e1 = Ellipse(Point(0, 0), 3, 2)
        >>> e1.arbitrary_point()
        Point(3*cos(t), 2*sin(t))

        """
        t = _symbol(parameter)
        if t.name in (f.name for f in self.free_symbols):
            raise ValueError('Symbol %s already appears in object and cannot be used as a parameter.' % t.name)
        return Point(self.center[0] + self.hradius*C.cos(t),
                self.center[1] + self.vradius*C.sin(t))
示例#10
0
def monomial_count(V, N):
    r"""
    Computes the number of monomials.

    The number of monomials is given by the following formula:

    .. math::

        \frac{(\#V + N)!}{\#V! N!}

    where `N` is a total degree and `V` is a set of variables.

    **Examples**

    >>> from sympy import monomials, monomial_count
    >>> from sympy.abc import x, y

    >>> monomial_count(2, 2)
    6

    >>> M = monomials([x, y], 2)

    >>> sorted(M)
    [1, x, y, x**2, y**2, x*y]
    >>> len(M)
    6

    """
    return C.factorial(V + N) / C.factorial(V) / C.factorial(N)
示例#11
0
    def eval(cls, z, a=S.One):
        z, a = map(sympify, (z, a))

        if a.is_Number:
            if a is S.NaN:
                return S.NaN
            elif a is S.Zero:
                return cls(z)

        if z.is_Number:
            if z is S.NaN:
                return S.NaN
            elif z is S.Infinity:
                return S.One
            elif z is S.Zero:
                if a.is_negative:
                    return S.Half - a - 1
                else:
                    return S.Half - a
            elif z is S.One:
                return S.ComplexInfinity
            elif z.is_Integer:
                if a.is_Integer:
                    if z.is_negative:
                        zeta = (-1)**z * C.bernoulli(-z+1)/(-z+1)
                    elif z.is_even:
                        B, F = C.bernoulli(z), C.factorial(z)
                        zeta = 2**(z-1) * abs(B) * pi**z / F
                    else:
                        return

                    if a.is_negative:
                        return zeta + C.harmonic(abs(a), z)
                    else:
                        return zeta - C.harmonic(a-1, z)
示例#12
0
文件: hyperbolic.py 项目: Aang/sympy
    def eval(cls, arg):
        arg = sympify(arg)

        if arg.is_Number:
            if arg is S.NaN:
                return S.NaN
            elif arg is S.Infinity:
                return S.Infinity
            elif arg is S.NegativeInfinity:
                return S.NegativeInfinity
            elif arg is S.Zero:
                return S.Zero
            elif arg is S.One:
                return C.log(2**S.Half + 1)
            elif arg is S.NegativeOne:
                return C.log(2**S.Half - 1)
            elif arg.is_negative:
                return -cls(-arg)
        else:
            i_coeff = arg.as_coefficient(S.ImaginaryUnit)

            if i_coeff is not None:
                return S.ImaginaryUnit * C.asin(i_coeff)
            else:
                if arg.as_coeff_mul()[0].is_negative:
                    return -cls(-arg)
 def as_real_imag(self, deep=True, **hints):
     re, im = self.args[0].as_real_imag()
     if deep:
         re = re.expand(deep, **hints)
         im = im.expand(deep, **hints)
     cos, sin = C.cos(im), C.sin(im)
     return (exp(re) * cos, exp(re) * sin)
示例#14
0
 def eval(cls, arg):
     from sympy.simplify.simplify import signsimp
     if hasattr(arg, '_eval_Abs'):
         obj = arg._eval_Abs()
         if obj is not None:
             return obj
     # handle what we can
     arg = signsimp(arg, evaluate=False)
     if arg.is_Mul:
         known = []
         unk = []
         for t in arg.args:
             tnew = cls(t)
             if tnew.func is cls:
                 unk.append(tnew.args[0])
             else:
                 known.append(tnew)
         known = Mul(*known)
         unk = cls(Mul(*unk), evaluate=False) if unk else S.One
         return known*unk
     if arg is S.NaN:
         return S.NaN
     if arg.is_Pow:
         base, exponent = arg.as_base_exp()
         if base.is_real:
             if exponent.is_integer:
                 if exponent.is_even:
                     return arg
                 if base is S.NegativeOne:
                     return S.One
                 if base.func is cls and exponent is S.NegativeOne:
                     return arg
                 return Abs(base)**exponent
             if base.is_positive == True:
                 return base**re(exponent)
             return (-base)**re(exponent)*C.exp(-S.Pi*im(exponent))
     if isinstance(arg, C.exp):
         return C.exp(re(arg.args[0]))
     if arg.is_zero:  # it may be an Expr that is zero
         return S.Zero
     if arg.is_nonnegative:
         return arg
     if arg.is_nonpositive:
         return -arg
     if arg.is_imaginary:
         arg2 = -S.ImaginaryUnit * arg
         if arg2.is_nonnegative:
             return arg2
     if arg.is_Add:
         if arg.has(S.Infinity, S.NegativeInfinity):
             if any(a.is_infinite for a in arg.as_real_imag()):
                 return S.Infinity
         if arg.is_real is None and arg.is_imaginary is None:
             if all(a.is_real or a.is_imaginary or (S.ImaginaryUnit*a).is_real for a in arg.args):
                 from sympy import expand_mul
                 return sqrt(expand_mul(arg*arg.conjugate()))
     if arg.is_real is False and arg.is_imaginary is False:
         from sympy import expand_mul
         return sqrt(expand_mul(arg*arg.conjugate()))
def real_root(arg, n=None):
    """Return the real nth-root of arg if possible. If n is omitted then
    all instances of (-n)**(1/odd) will be changed to -n**(1/odd); this
    will only create a real root of a principle root -- the presence of
    other factors may cause the result to not be real.

    Examples
    ========

    >>> from sympy import root, real_root, Rational
    >>> from sympy.abc import x, n

    >>> real_root(-8, 3)
    -2
    >>> root(-8, 3)
    2*(-1)**(1/3)
    >>> real_root(_)
    -2

    If one creates a non-principle root and applies real_root, the
    result will not be real (so use with caution):

    >>> root(-8, 3, 2)
    -2*(-1)**(2/3)
    >>> real_root(_)
    -2*(-1)**(2/3)


    See Also
    ========

    sympy.polys.rootoftools.RootOf
    sympy.core.power.integer_nthroot
    root, sqrt
    """
    if n is not None:
        try:
            n = as_int(n)
            arg = sympify(arg)
            if arg.is_positive or arg.is_negative:
                rv = root(arg, n)
            else:
                raise ValueError
        except ValueError:
            return root(arg, n)*C.Piecewise(
                (S.One, ~C.Equality(C.im(arg), 0)),
                (C.Pow(S.NegativeOne, S.One/n)**(2*C.floor(n/2)), C.And(
                    C.Equality(n % 2, 1),
                    arg < 0)),
                (S.One, True))
    else:
        rv = sympify(arg)
    n1pow = Transform(lambda x: -(-x.base)**x.exp,
                      lambda x:
                      x.is_Pow and
                      x.base.is_negative and
                      x.exp.is_Rational and
                      x.exp.p == 1 and x.exp.q % 2)
    return rv.xreplace(n1pow)
示例#16
0
    def eval(cls, n, z):
        n, z = list(map(sympify, (n, z)))
        from sympy import unpolarify

        if n.is_integer:
            if n.is_nonnegative:
                nz = unpolarify(z)
                if z != nz:
                    return polygamma(n, nz)

            if n == -1:
                return loggamma(z)
            else:
                if z.is_Number:
                    if z is S.NaN:
                        return S.NaN
                    elif z is S.Infinity:
                        if n.is_Number:
                            if n is S.Zero:
                                return S.Infinity
                            else:
                                return S.Zero
                    elif z.is_Integer:
                        if z.is_nonpositive:
                            return S.ComplexInfinity
                        else:
                            if n is S.Zero:
                                return -S.EulerGamma + C.harmonic(z - 1, 1)
                            elif n.is_odd:
                                return (-1) ** (n + 1) * C.factorial(n) * zeta(n + 1, z)

        if n == 0:
            if z is S.NaN:
                return S.NaN
            elif z.is_Rational:
                # TODO actually *any* n/m can be done, but that is messy
                lookup = {
                    S(1) / 2: -2 * log(2) - S.EulerGamma,
                    S(1) / 3: -S.Pi / 2 / sqrt(3) - 3 * log(3) / 2 - S.EulerGamma,
                    S(1) / 4: -S.Pi / 2 - 3 * log(2) - S.EulerGamma,
                    S(3) / 4: -3 * log(2) - S.EulerGamma + S.Pi / 2,
                    S(2) / 3: -3 * log(3) / 2 + S.Pi / 2 / sqrt(3) - S.EulerGamma,
                }
                if z > 0:
                    n = floor(z)
                    z0 = z - n
                    if z0 in lookup:
                        return lookup[z0] + Add(*[1 / (z0 + k) for k in range(n)])
                elif z < 0:
                    n = floor(1 - z)
                    z0 = z + n
                    if z0 in lookup:
                        return lookup[z0] - Add(*[1 / (z0 - 1 - k) for k in range(n)])
            elif z in (S.Infinity, S.NegativeInfinity):
                return S.Infinity
            else:
                t = z.extract_multiplicatively(S.ImaginaryUnit)
                if t in (S.Infinity, S.NegativeInfinity):
                    return S.Infinity
示例#17
0
文件: hyperbolic.py 项目: ENuge/sympy
    def eval(cls, arg):
        arg = sympify(arg)

        if arg.is_Number:
            if arg is S.NaN:
                return S.NaN
            elif arg is S.Infinity:
                return S.Infinity
            elif arg is S.NegativeInfinity:
                return S.Infinity
            elif arg is S.Zero:
                return S.Pi*S.ImaginaryUnit / 2
            elif arg is S.One:
                return S.Zero
            elif arg is S.NegativeOne:
                return S.Pi*S.ImaginaryUnit

        if arg.is_number:
            cst_table = {
                S.ImaginaryUnit : C.log(S.ImaginaryUnit*(1+sqrt(2))),
                -S.ImaginaryUnit : C.log(-S.ImaginaryUnit*(1+sqrt(2))),
                S.Half       : S.Pi/3,
                -S.Half      : 2*S.Pi/3,
                sqrt(2)/2    : S.Pi/4,
                -sqrt(2)/2   : 3*S.Pi/4,
                1/sqrt(2)    : S.Pi/4,
                -1/sqrt(2)   : 3*S.Pi/4,
                sqrt(3)/2    : S.Pi/6,
                -sqrt(3)/2   : 5*S.Pi/6,
                (sqrt(3)-1)/sqrt(2**3) : 5*S.Pi/12,
                -(sqrt(3)-1)/sqrt(2**3) : 7*S.Pi/12,
                sqrt(2+sqrt(2))/2 : S.Pi/8,
                -sqrt(2+sqrt(2))/2 : 7*S.Pi/8,
                sqrt(2-sqrt(2))/2 : 3*S.Pi/8,
                -sqrt(2-sqrt(2))/2 : 5*S.Pi/8,
                (1+sqrt(3))/(2*sqrt(2)) : S.Pi/12,
                -(1+sqrt(3))/(2*sqrt(2)) : 11*S.Pi/12,
                (sqrt(5)+1)/4 : S.Pi/5,
                -(sqrt(5)+1)/4 : 4*S.Pi/5
            }

            if arg in cst_table:
                if arg.is_real:
                    return cst_table[arg]*S.ImaginaryUnit
                return cst_table[arg]

        if arg is S.ComplexInfinity:
            return S.Infinity

        i_coeff = arg.as_coefficient(S.ImaginaryUnit)

        if i_coeff is not None:
            if _coeff_isneg(i_coeff):
                return S.ImaginaryUnit * C.acos(i_coeff)
            return S.ImaginaryUnit * C.acos(-i_coeff)
        else:
            if _coeff_isneg(arg):
                return -cls(-arg)
示例#18
0
    def _eval_aseries(self, n, args0, x, logx):
        if args0[0] != S.Infinity:
            return super(_erfs, self)._eval_aseries(n, args0, x, logx)

        z = self.args[0]
        l = [ 1/sqrt(S.Pi) * C.factorial(2*k)*(-S(4))**(-k)/C.factorial(k) * (1/z)**(2*k+1) for k in xrange(0,n) ]
        o = C.Order(1/z**(2*n+1), x)
        # It is very inefficient to first add the order and then do the nseries
        return (Add(*l))._eval_nseries(x, n, logx) + o
示例#19
0
    def eval(cls, a, x):
        if a.is_Number:
            if a is S.One:
                return S.One - C.exp(-x)
            elif a.is_Integer:
                b = a - 1

                if b.is_positive:
                    return b*cls(b, x) - x**b * C.exp(-x)
示例#20
0
文件: numbers.py 项目: cstoudt/sympy
    def eval(cls, n):
        if (n.is_Integer and n.is_nonnegative) or \
           (n.is_noninteger and n.is_negative):
            return 4**n*C.gamma(n + S.Half)/(C.gamma(S.Half)*C.gamma(n + 2))

        if (n.is_integer and n.is_negative):
            if (n + 1).is_negative:
                return S.Zero
            if (n + 1).is_zero:
                return -S.Half
示例#21
0
 def taylor_term(n, x, *previous_terms):
     if n < 0 or n % 2 == 0:
         return S.Zero
     else:
         x = sympify(x)
         k = C.floor((n - 1)/S(2))
         if len(previous_terms) > 2:
             return -previous_terms[-2] * x**2 * (n - 2)/(n*k)
         else:
             return 2*(-1)**k * x**n/(n*C.factorial(k)*sqrt(S.Pi))
示例#22
0
文件: factorials.py 项目: sympy/sympy
    def eval(cls, r, k):
        r, k = map(sympify, (r, k))

        if k.is_Number:
            if k is S.Zero:
                return S.One
            elif k.is_Integer:
                if k.is_negative:
                    return S.Zero
                else:
                    if r.is_Integer and r.is_nonnegative:
                        r, k = int(r), int(k)

                        if k > r:
                            return S.Zero
                        elif k > r // 2:
                            k = r - k

                        M, result = int(sqrt(r)), 1

                        for prime in sieve.primerange(2, r + 1):
                            if prime > r - k:
                                result *= prime
                            elif prime > r // 2:
                                continue
                            elif prime > M:
                                if r % prime < k % prime:
                                    result *= prime
                            else:
                                R, K = r, k
                                exp = a = 0

                                while R > 0:
                                    a = int((R % prime) < (K % prime + a))
                                    R, K = R // prime, K // prime
                                    exp = a + exp

                                if exp > 0:
                                    result *= prime ** exp

                        return C.Integer(result)
                    else:
                        result = r - k + 1

                        for i in xrange(2, k + 1):
                            result *= r - k + i
                            result /= i

                        return result

        if k.is_integer:
            if k.is_negative:
                return S.Zero
        else:
            return C.gamma(r + 1) / (C.gamma(r - k + 1) * C.gamma(k + 1))
示例#23
0
def separate(expr, deep=False):
    """Rewrite or separate a power of product to a product of powers
       but without any expanding, ie. rewriting products to summations.

       >>> from sympy import *
       >>> x, y, z = symbols('x', 'y', 'z')

       >>> separate((x*y)**2)
       x**2*y**2

       >>> separate((x*(y*z)**3)**2)
       x**2*y**6*z**6

       >>> separate((x*sin(x))**y + (x*cos(x))**y)
       x**y*cos(x)**y + x**y*sin(x)**y

       #this does not work because of exp combining
       #>>> separate((exp(x)*exp(y))**x)
       #exp(x*y)*exp(x**2)

       >>> separate((sin(x)*cos(x))**y)
       cos(x)**y*sin(x)**y

       Notice that summations are left un touched. If this is not the
       requested behaviour, apply 'expand' to input expression before:

       >>> separate(((x+y)*z)**2)
       z**2*(x + y)**2

       >>> separate((x*y)**(1+z))
       x**(1 + z)*y**(1 + z)

    """
    expr = sympify(expr)

    if expr.is_Pow:
        terms, expo = [], separate(expr.exp, deep)

        if expr.base.is_Mul:
            t = [ separate(C.Pow(t,expo), deep) for t in expr.base.args ]
            return C.Mul(*t)
        elif expr.base.func is C.exp:
            if deep == True:
                return C.exp(separate(expr.base[0], deep)*expo)
            else:
                return C.exp(expr.base[0]*expo)
        else:
            return C.Pow(separate(expr.base, deep), expo)
    elif expr.is_Add or expr.is_Mul:
        return type(expr)(*[ separate(t, deep) for t in expr.args ])
    elif expr.is_Function and deep:
        return expr.func(*[ separate(t) for t in expr.args])
    else:
        return expr
示例#24
0
 def fdiff(self, argindex=1):
     if argindex == 1:
         # http://functions.wolfram.com/GammaBetaErf/Binomial/20/01/01/
         n, k = self.args
         return binomial(n, k)*(C.polygamma(0, n + 1) - C.polygamma(0, n - k + 1))
     elif argindex == 2:
         # http://functions.wolfram.com/GammaBetaErf/Binomial/20/01/02/
         n, k = self.args
         return binomial(n, k)*(C.polygamma(0, n - k + 1) - C.polygamma(0, k + 1))
     else:
         raise ArgumentIndexError(self, argindex)
 def as_real_imag(self, deep=True, **hints):
     if deep:
         abs = C.Abs(self.args[0].expand(deep, **hints))
         arg = C.arg(self.args[0].expand(deep, **hints))
     else:
         abs = C.Abs(self.args[0])
         arg = C.arg(self.args[0])
     if hints.get("log", False):  # Expand the log
         hints["complex"] = False
         return (log(abs).expand(deep, **hints), arg)
     else:
         return (log(abs), arg)
示例#26
0
文件: hyperbolic.py 项目: Aang/sympy
 def as_real_imag(self, deep=True, **hints):
     if self.args[0].is_real:
         if deep:
             return (self.expand(deep, **hints), S.Zero)
         else:
             return (self, S.Zero)
     if deep:
         re, im = self.args[0].expand(deep, **hints).as_real_imag()
     else:
         re, im = self.args[0].as_real_imag()
     denom = sinh(re)**2 + C.sin(im)**2
     return (sinh(re)*cosh(re)/denom, -C.sin(im)*C.cos(im)/denom)
示例#27
0
文件: hyperbolic.py 项目: Aang/sympy
 def as_real_imag(self, deep=True, **hints):
     if self.args[0].is_real:
         if deep:
             hints['complex'] = False
             return (self.expand(deep, **hints), S.Zero)
         else:
             return (self, S.Zero)
     if deep:
         re, im = self.args[0].expand(deep, **hints).as_real_imag()
     else:
         re, im = self.args[0].as_real_imag()
     return (sinh(re)*C.cos(im), cosh(re)*C.sin(im))
示例#28
0
 def _eval_expand_complex(self, deep=True, **hints):
     if deep:
         abs = C.abs(self.args[0].expand(deep, **hints))
         arg = C.arg(self.args[0].expand(deep, **hints))
     else:
         abs = C.abs(self.args[0])
         arg = C.arg(self.args[0])
     if hints['log']: # Expand the log
         hints['complex'] = False
         return log(abs).expand(deep, **hints) + S.ImaginaryUnit * arg
     else:
         return log(abs) + S.ImaginaryUnit * arg
示例#29
0
文件: hyperbolic.py 项目: ENuge/sympy
    def taylor_term(n, x, *previous_terms):
        if n == 0:
            return 1 / sympify(x)
        elif n < 0 or n % 2 == 0:
            return S.Zero
        else:
            x = sympify(x)

            B = C.bernoulli(n+1)
            F = C.factorial(n+1)

            return 2**(n+1) * B/F * x**n
示例#30
0
 def as_real_imag(self, deep=True, **hints):
     if deep:
         abs = C.abs(self.args[0].expand(deep, **hints))
         arg = C.arg(self.args[0].expand(deep, **hints))
     else:
         abs = C.abs(self.args[0])
         arg = C.arg(self.args[0])
     if hints['log']: # Expand the log
         hints['complex'] = False
         return (log(abs).expand(deep, **hints), arg)
     else:
         return (log(abs), arg)
示例#31
0
文件: numbers.py 项目: glyg/sympy
 def fdiff(self, argindex=1):
     n = self.args[0]
     return catalan(n) * (C.polygamma(0, n + Rational(1, 2)) -
                          C.polygamma(0, n + 2) + C.log(4))
示例#32
0
 def _eval_rewrite_as_gamma(self, n):
     return C.gamma(n + 1)
示例#33
0
 def _eval_rewrite_as_gamma(self, x, k):
     return (-1)**k * C.gamma(-x + k) / C.gamma(-x)
示例#34
0
 def _eval_rewrite_as_Heaviside(self, arg):
     # Note this only holds for real arg (since Heaviside is not defined
     # for complex arguments).
     if arg.is_real:
         return arg*(C.Heaviside(arg) - C.Heaviside(-arg))
示例#35
0
 def _eval_rewrite_as_exp(self, arg):
     return (C.exp(arg) + C.exp(-arg)) / 2
示例#36
0
 def _eval_rewrite_as_exp(self, arg):
     neg_exp, pos_exp = C.exp(-arg), C.exp(arg)
     return (pos_exp + neg_exp) / (pos_exp - neg_exp)
示例#37
0
 def _eval_rewrite_as_tanh(self, arg):
     return (1 + C.tanh(arg/2))/(1 - C.tanh(arg/2))
示例#38
0
def root(arg, n):
    """The n-th root function (a shortcut for ``arg**(1/n)``)

    root(x, n) -> Returns the principal n-th root of x.


    Examples
    ========

    >>> from sympy import root, Rational
    >>> from sympy.abc import x, n

    >>> root(x, 2)
    sqrt(x)

    >>> root(x, 3)
    x**(1/3)

    >>> root(x, n)
    x**(1/n)

    >>> root(x, -Rational(2, 3))
    x**(-3/2)


    To get all n n-th roots you can use the RootOf function.
    The following examples show the roots of unity for n
    equal 2, 3 and 4:

    >>> from sympy import RootOf, I

    >>> [ RootOf(x**2-1,i) for i in (0,1) ]
    [-1, 1]

    >>> [ RootOf(x**3-1,i) for i in (0,1,2) ]
    [1, -1/2 - sqrt(3)*I/2, -1/2 + sqrt(3)*I/2]

    >>> [ RootOf(x**4-1,i) for i in (0,1,2,3) ]
    [-1, 1, -I, I]

    SymPy, like other symbolic algebra systems, returns the
    complex root of negative numbers. This is the principal
    root and differs from the text-book result that one might
    be expecting. For example, the cube root of -8 does not
    come back as -2:

    >>> root(-8, 3)
    2*(-1)**(1/3)

    The real_root function can be used to either make such a result
    real or simply return the real root in the first place:

    >>> from sympy import real_root
    >>> real_root(_)
    -2
    >>> real_root(-32, 5)
    -2

    See Also
    ========

    sympy.polys.rootoftools.RootOf
    sympy.core.power.integer_nthroot
    sqrt, real_root

    References
    ==========

    * http://en.wikipedia.org/wiki/Square_root
    * http://en.wikipedia.org/wiki/Real_root
    * http://en.wikipedia.org/wiki/Root_of_unity
    * http://en.wikipedia.org/wiki/Principal_value
    * http://mathworld.wolfram.com/CubeRoot.html

    """
    n = sympify(n)
    return C.Pow(arg, 1/n)
示例#39
0
 def fdiff(self, argindex=1):
     if argindex == 1:
         return C.gamma(self.args[0] + 1) * C.polygamma(0, self.args[0] + 1)
     else:
         raise ArgumentIndexError(self, argindex)
示例#40
0
def sqrt(arg):
    """The square root function

    sqrt(x) -> Returns the principal square root of x.

    Examples
    ========

    >>> from sympy import sqrt, Symbol
    >>> x = Symbol('x')

    >>> sqrt(x)
    sqrt(x)

    >>> sqrt(x)**2
    x

    Note that sqrt(x**2) does not simplify to x.

    >>> sqrt(x**2)
    sqrt(x**2)

    This is because the two are not equal to each other in general.
    For example, consider x == -1:

    >>> from sympy import Eq
    >>> Eq(sqrt(x**2), x).subs(x, -1)
    False

    This is because sqrt computes the principal square root, so the square may
    put the argument in a different branch.  This identity does hold if x is
    positive:

    >>> y = Symbol('y', positive=True)
    >>> sqrt(y**2)
    y

    You can force this simplification by using the powdenest() function with
    the force option set to True:

    >>> from sympy import powdenest
    >>> sqrt(x**2)
    sqrt(x**2)
    >>> powdenest(sqrt(x**2), force=True)
    x

    To get both branches of the square root you can use the RootOf function:

    >>> from sympy import RootOf

    >>> [ RootOf(x**2-3,i) for i in (0,1) ]
    [-sqrt(3), sqrt(3)]

    See Also
    ========

    sympy.polys.rootoftools.RootOf, root, real_root

    References
    ==========

    * http://en.wikipedia.org/wiki/Square_root
    * http://en.wikipedia.org/wiki/Principal_value

    """
    # arg = sympify(arg) is handled by Pow
    return C.Pow(arg, S.Half)
示例#41
0
 def _eval_rewrite_as_factorial(self, n, k):
     return C.factorial(n) / (C.factorial(k) * C.factorial(n - k))
示例#42
0
 def _eval_rewrite_as_tractable(self, z):
     return S.One - _erfs(z) * C.exp(-z**2)
示例#43
0
文件: numbers.py 项目: glyg/sympy
 def eval(cls, n):
     if n.is_Integer and n.is_nonnegative:
         return 4**n * C.gamma(n + S.Half) / (C.gamma(S.Half) *
                                              C.gamma(n + 2))
示例#44
0
 def _eval_rewrite_as_cos(self, arg):
     I = S.ImaginaryUnit
     return C.cos(I*arg) + I*C.cos(I*arg + S.Pi/2)
示例#45
0
文件: numbers.py 项目: glyg/sympy
 def _eval_rewrite_as_Sum(self, n, m=None):
     k = C.Dummy("k", integer=True)
     if m is None:
         m = S.One
     return C.Sum(k**(-m), (k, 1, n))
示例#46
0
 def _eval_rewrite_as_sin(self, arg):
     I = S.ImaginaryUnit
     return C.sin(I*arg + S.Pi/2) - I*C.sin(I*arg)
示例#47
0
 def _eval_rewrite_as_intractable(self, z):
     return (S.One - erf(z)) * C.exp(z**2)
示例#48
0
 def _eval_rewrite_as_Heaviside(self, arg):
     if arg.is_real:
         return C.Heaviside(arg)*2-1
示例#49
0
 def _eval_rewrite_as_sign(self, arg):
     return arg/C.sign(arg)
示例#50
0
文件: pde.py 项目: PrathikSai/sympy
def pde_1st_linear_constant_coeff(eq, func, order, match, solvefun):
    r"""
    Solves a first order linear partial differential equation
    with constant coefficients.

    The general form of this partial differential equation is

    .. math:: a \frac{df(x,y)}{dx} + b \frac{df(x,y)}{dy} + c f(x,y) = G(x,y)

    where `a`, `b` and `c` are constants and `G(x, y)` can be an arbitrary
    function in `x` and `y`.

    The general solution of the PDE is::

        >>> from sympy.solvers import pdsolve
        >>> from sympy.abc import x, y, a, b, c
        >>> from sympy import Function, pprint
        >>> f = Function('f')
        >>> G = Function('G')
        >>> u = f(x,y)
        >>> ux = u.diff(x)
        >>> uy = u.diff(y)
        >>> genform = a*u + b*ux + c*uy - G(x,y)
        >>> pprint(genform)
                  d               d
        a*f(x, y) + b*--(f(x, y)) + c*--(f(x, y)) - G(x, y)
                  dx              dy
        >>> pprint(pdsolve(genform, hint='1st_linear_constant_coeff_Integral'))
                  //          b*x + c*y                                             \
                  ||              /                                                 |
                  ||             |                                                  |
                  ||             |                                       a*xi       |
                  ||             |                                     -------      |
                  ||             |                                      2    2      |
                  ||             |      /b*xi + c*eta  -b*eta + c*xi\  b  + c       |
                  ||             |     G|------------, -------------|*e        d(xi)|
                  ||             |      |   2    2         2    2   |               |
                  ||             |      \  b  + c         b  + c    /               |
                  ||             |                                                  |
                  ||            /                                                   |
                  ||                                                                |
        f(x, y) = ||F(eta) + -------------------------------------------------------|*
                  ||                                  2    2                        |
                  \\                                 b  + c                         /
        <BLANKLINE>
                \|
                ||
                ||
                ||
                ||
                ||
                ||
                ||
                ||
          -a*xi ||
         -------||
          2    2||
         b  + c ||
        e       ||
                ||
                /|eta=-b*y + c*x, xi=b*x + c*y


    Examples
    ========

    >>> from sympy.solvers.pde import pdsolve
    >>> from sympy import Function, diff, pprint, exp
    >>> from sympy.abc import x,y
    >>> f = Function('f')
    >>> eq = -2*f(x,y).diff(x) + 4*f(x,y).diff(y) + 5*f(x,y) - exp(x + 3*y)
    >>> pdsolve(eq)
    f(x, y) == (F(4*x + 2*y) + exp(x/2 + 4*y)/15)*exp(x/2 - y)

    References
    ==========

    - Viktor Grigoryan, "Partial Differential Equations"
      Math 124A - Fall 2010, pp.7

    """

    # TODO : For now homogeneous first order linear PDE's having
    # two variables are implemented. Once there is support for
    # solving systems of ODE's, this can be extended to n variables.

    xi, eta = symbols("xi eta")
    f = func.func
    x = func.args[0]
    y = func.args[1]
    b = match[match['b']]
    c = match[match['c']]
    d = match[match['d']]
    e = -match[match['e']]
    expterm = exp(-S(d) / (b**2 + c**2) * xi)
    functerm = solvefun(eta)
    solvedict = solve((b * x + c * y - xi, c * x - b * y - eta), x, y)
    # Integral should remain as it is in terms of xi,
    # doit() should be done in _handle_Integral.
    genterm = (1 / S(b**2 + c**2)) * C.Integral(
        (1 / expterm * e).subs(solvedict), (xi, b * x + c * y))
    return Eq(
        f(x, y),
        Subs(expterm * (functerm + genterm), (eta, xi),
             (c * x - b * y, b * x + c * y)))
示例#51
0
 def eval(cls, s):
     if s == 1:
         return C.log(2)
     else:
         return (1-2**(1-s)) * zeta(s)
示例#52
0
 def _eval_rewrite_as_gamma(self, x, k):
     return C.gamma(x + k) / C.gamma(x)
示例#53
0
 def _eval_rewrite_as_uppergamma(self, z):
     return sqrt(z**
                 2) / z * (S.One - C.uppergamma(S.Half, z**2) / sqrt(S.Pi))
示例#54
0
def limit(e, z, z0, dir="+"):
    """
    Compute the limit of e(z) at the point z0.

    z0 can be any expression, including oo and -oo.

    For dir="+" (default) it calculates the limit from the right
    (z->z0+) and for dir="-" the limit from the left (z->z0-). For infinite z0
    (oo or -oo), the dir argument doesn't matter.

    Examples:

    >>> from sympy import limit, sin, Symbol, oo
    >>> from sympy.abc import x
    >>> limit(sin(x)/x, x, 0)
    1
    >>> limit(1/x, x, 0, dir="+")
    oo
    >>> limit(1/x, x, 0, dir="-")
    -oo
    >>> limit(1/x, x, oo)
    0

    Strategy:

    First we try some heuristics for easy and frequent cases like "x", "1/x",
    "x**2" and similar, so that it's fast. For all other cases, we use the
    Gruntz algorithm (see the gruntz() function).
    """
    from sympy import Wild, log

    e = sympify(e)
    z = sympify(z)
    z0 = sympify(z0)

    if e == z:
        return z0

    if e.is_Rational:
        return e

    if not e.has(z):
        return e

    if e.func is tan:
        # discontinuity at odd multiples of pi/2; 0 at even
        disc = S.Pi/2
        sign = 1
        if dir == '-':
            sign *= -1
        i = limit(sign*e.args[0], z, z0)/disc
        if i.is_integer:
            if i.is_even:
                return S.Zero
            elif i.is_odd:
                if dir == '+':
                    return S.NegativeInfinity
                else:
                    return S.Infinity

    if e.func is cot:
        # discontinuity at multiples of pi; 0 at odd pi/2 multiples
        disc = S.Pi
        sign = 1
        if dir == '-':
            sign *= -1
        i = limit(sign*e.args[0], z, z0)/disc
        if i.is_integer:
            if dir == '-':
                return S.NegativeInfinity
            else:
                return S.Infinity
        elif (2*i).is_integer:
            return S.Zero

    if e.is_Pow:
        b, ex = e.args
        c = None # records sign of b if b is +/-z or has a bounded value
        if b.is_Mul:
            c, b = b.as_two_terms()
            if c is S.NegativeOne and b == z:
                c = '-'
        elif b == z:
            c = '+'

        if ex.is_number:
            if c is None:
                base = b.subs(z, z0)
                if base.is_bounded and (ex.is_bounded or base is not S.One):
                    return base**ex
            else:
                if z0 == 0 and ex < 0:
                    if dir != c:
                        # integer
                        if ex.is_even:
                            return S.Infinity
                        elif ex.is_odd:
                            return S.NegativeInfinity
                        # rational
                        elif ex.is_Rational:
                            return (S.NegativeOne**ex)*S.Infinity
                        else:
                            return S.ComplexInfinity
                    return S.Infinity
                return z0**ex

    if e.is_Mul or not z0 and e.is_Pow and b.func is log:
        if e.is_Mul:
            # weed out the z-independent terms
            i, d = e.as_independent(z)
            if i is not S.One:
                return i*limit(d, z, z0, dir)
        else:
            i, d = S.One, e
        if not z0:
            # look for log(z)**q or z**p*log(z)**q
            p, q = Wild("p"), Wild("q")
            r = d.match(z**p * log(z)**q)
            if r:
                p, q = [r.get(w, w) for w in [p, q]]
                if q and q.is_number and p.is_number:
                    if q > 0:
                        if p > 0:
                            return S.Zero
                        else:
                            return -oo*i
                    else:
                        if p >= 0:
                            return S.Zero
                        else:
                            return -oo*i

    if e.is_Add:
        if e.is_polynomial() and not z0.is_unbounded:
            return Add(*[limit(term, z, z0, dir) for term in e.args])

        # this is a case like limit(x*y+x*z, z, 2) == x*y+2*x
        # but we need to make sure, that the general gruntz() algorithm is
        # executed for a case like "limit(sqrt(x+1)-sqrt(x),x,oo)==0"
        unbounded = []; unbounded_result=[]
        finite = []; unknown = []
        ok = True
        for term in e.args:
            if not term.has(z):
                finite.append(term)
                continue
            result = term.subs(z, z0)
            bounded = result.is_bounded
            if bounded is False or result is S.NaN:
                if unknown:
                    ok = False
                    break
                unbounded.append(term)
                if result != S.NaN:
                    # take result from direction given
                    result = limit(term, z, z0, dir)
                unbounded_result.append(result)
            elif bounded:
                finite.append(result)
            else:
                if unbounded:
                    ok = False
                    break
                unknown.append(result)
        if not ok:
            # we won't be able to resolve this with unbounded
            # terms, e.g. Sum(1/k, (k, 1, n)) - log(n) as n -> oo:
            # since the Sum is unevaluated it's boundedness is
            # unknown and the log(n) is oo so you get Sum - oo
            # which is unsatisfactory.
            raise NotImplementedError('unknown boundedness for %s' %
                                      (unknown or result))
        u = Add(*unknown)
        if unbounded:
            inf_limit = Add(*unbounded_result)
            if inf_limit is not S.NaN:
                return inf_limit + u
            if finite:
                return Add(*finite) + limit(Add(*unbounded), z, z0, dir) + u
        else:
            return Add(*finite) + u

    if e.is_Order:
        args = e.args
        return C.Order(limit(args[0], z, z0), *args[1:])

    try:
        r = gruntz(e, z, z0, dir)
        if r is S.NaN:
            raise PoleError()
    except PoleError:
        r = heuristics(e, z, z0, dir)
    return r
示例#55
0
文件: numbers.py 项目: glyg/sympy
 def _eval_rewrite_as_hyper(self, n):
     return C.hyper([1 - n, -n], [2], 1)
示例#56
0
 def fdiff(self, argindex=1):
     if argindex == 1:
         return 2 * C.exp(-self.args[0]**2) / sqrt(S.Pi)
     else:
         raise ArgumentIndexError(self, argindex)
示例#57
0
文件: numbers.py 项目: glyg/sympy
 def _eval_rewrite_as_gamma(self, n):
     # The gamma function allows to generalize Catalan numbers to complex n
     return 4**n * C.gamma(n + S.Half) / (C.gamma(S.Half) * C.gamma(n + 2))
示例#58
0
文件: numbers.py 项目: glyg/sympy
 def _eval_rewrite_as_binomial(self, n):
     return C.binomial(2 * n, n) / (n + 1)
示例#59
0
 def _eval_rewrite_as_gamma(self, n, k):
     return C.gamma(n + 1) / (C.gamma(k + 1) * C.gamma(n - k + 1))
示例#60
0
 def _eval_rewrite_as_Heaviside(self, *args):
     return C.Add(*[j*C.Mul(*[C.Heaviside(i-j) for i in args if i!=j]) \
             for j in args])