def contact_forces(self): """Returns contact forces on each wheel.""" self.conForceNoncontri = self._kane.auxiliary_eqs.applyfunc( lambda w: factor_terms(signsimp(w))).subs(self._kdd) return self.conForceNoncontri
def test_DiracDelta(): assert DiracDelta(1) == 0 assert DiracDelta(5.1) == 0 assert DiracDelta(-pi) == 0 assert DiracDelta(5, 7) == 0 assert DiracDelta(i) == 0 assert DiracDelta(j) == 0 assert DiracDelta(k) == 0 assert DiracDelta(nan) == nan assert DiracDelta(0).func is DiracDelta assert DiracDelta(x).func is DiracDelta # FIXME: this is generally undefined @ x=0 # But then limit(Delta(c)*Heaviside(x),x,-oo) # need's to be implemented. #assert 0*DiracDelta(x) == 0 assert adjoint(DiracDelta(x)) == DiracDelta(x) assert adjoint(DiracDelta(x - y)) == DiracDelta(x - y) assert conjugate(DiracDelta(x)) == DiracDelta(x) assert conjugate(DiracDelta(x - y)) == DiracDelta(x - y) assert transpose(DiracDelta(x)) == DiracDelta(x) assert transpose(DiracDelta(x - y)) == DiracDelta(x - y) assert DiracDelta(x).diff(x) == DiracDelta(x, 1) assert DiracDelta(x, 1).diff(x) == DiracDelta(x, 2) assert DiracDelta(x).is_simple(x) is True assert DiracDelta(3*x).is_simple(x) is True assert DiracDelta(x**2).is_simple(x) is False assert DiracDelta(sqrt(x)).is_simple(x) is False assert DiracDelta(x).is_simple(y) is False assert DiracDelta(x*y).expand(diracdelta=True, wrt=x) == DiracDelta(x)/abs(y) assert DiracDelta(x*y).expand(diracdelta=True, wrt=y) == DiracDelta(y)/abs(x) assert DiracDelta(x**2*y).expand(diracdelta=True, wrt=x) == DiracDelta(x**2*y) assert DiracDelta(y).expand(diracdelta=True, wrt=x) == DiracDelta(y) assert DiracDelta((x - 1)*(x - 2)*(x - 3)).expand(diracdelta=True, wrt=x) == ( DiracDelta(x - 3)/2 + DiracDelta(x - 2) + DiracDelta(x - 1)/2) assert DiracDelta(2*x) != DiracDelta(x) # scaling property assert DiracDelta(x) == DiracDelta(-x) # even function assert DiracDelta(-x, 2) == DiracDelta(x, 2) assert DiracDelta(-x, 1) == -DiracDelta(x, 1) # odd deriv is odd assert DiracDelta(-oo*x) == DiracDelta(oo*x) assert DiracDelta(x - y) != DiracDelta(y - x) assert signsimp(DiracDelta(x - y) - DiracDelta(y - x)) == 0 with raises(SymPyDeprecationWarning): assert DiracDelta(x*y).simplify(x) == DiracDelta(x)/abs(y) assert DiracDelta(x*y).simplify(y) == DiracDelta(y)/abs(x) assert DiracDelta(x**2*y).simplify(x) == DiracDelta(x**2*y) assert DiracDelta(y).simplify(x) == DiracDelta(y) assert DiracDelta((x - 1)*(x - 2)*(x - 3)).simplify(x) == ( DiracDelta(x - 3)/2 + DiracDelta(x - 2) + DiracDelta(x - 1)/2) raises(ArgumentIndexError, lambda: DiracDelta(x).fdiff(2)) raises(ValueError, lambda: DiracDelta(x, -1)) raises(ValueError, lambda: DiracDelta(I)) raises(ValueError, lambda: DiracDelta(2 + 3*I))
def test_issue_10285(): assert FiniteSet(-x - 1).intersect(Interval.Ropen(1, 2)) == FiniteSet(x).intersect(Interval.Lopen(-3, -2)) eq = -x - 2 * (-x - y) s = signsimp(eq) ivl = Interval.open(0, 1) assert FiniteSet(eq).intersect(ivl) == FiniteSet(s).intersect(ivl) assert FiniteSet(-eq).intersect(ivl) == FiniteSet(s).intersect(Interval.open(-1, 0)) eq -= 1 ivl = Interval.Lopen(1, oo) assert FiniteSet(eq).intersect(ivl) == FiniteSet(s).intersect(Interval.Lopen(2, oo))
def test_issue_10285(): assert FiniteSet(-x - 1).intersect(Interval.Ropen(1, 2)) == \ FiniteSet(x).intersect(Interval.Lopen(-3, -2)) eq = -x - 2 * (-x - y) s = signsimp(eq) ivl = Interval.open(0, 1) assert FiniteSet(eq).intersect(ivl) == FiniteSet(s).intersect(ivl) assert FiniteSet(-eq).intersect(ivl) == \ FiniteSet(s).intersect(Interval.open(-1, 0)) eq -= 1 ivl = Interval.Lopen(1, oo) assert FiniteSet(eq).intersect(ivl) == \ FiniteSet(s).intersect(Interval.Lopen(2, oo))
def test_signsimp(): e = x*(-x + 1) + x*(x - 1) assert signsimp(Eq(e, 0)) is S.true assert Abs(x - 1) == Abs(1 - x) assert signsimp(y - x) == y - x assert signsimp(y - x, evaluate=False) == Mul(-1, x - y, evaluate=False)
def test_issue_17524(): a = symbols("a", real=True) e = (-1 - a**2) * sqrt(1 + a**2) assert signsimp(powsimp(e)) == signsimp(e) == -(a**2 + 1)**(S(3) / 2)
def __call__(self, equations, variables=None, method_options=None): method_options = extract_method_options(method_options, {'simplify': True}) if equations.is_stochastic: raise UnsupportedEquationsException('Cannot solve stochastic ' 'equations with this state ' 'updater.') if variables is None: variables = {} # Get a representation of the ODE system in the form of # dX/dt = M*X + B varnames, matrix, constants = get_linear_system(equations, variables) # No differential equations, nothing to do (this occurs sometimes in the # test suite where the whole model is nothing more than something like # 'v : 1') if matrix.shape == (0, 0): return '' # Make sure that the matrix M is constant, i.e. it only contains # external variables or constant variables t = Symbol('t', real=True, positive=True) # Check for time dependence dt_value = variables['dt'].get_value()[0] if 'dt' in variables else None # This will raise an error if we meet the symbol "t" anywhere # except as an argument of a locally constant function for entry in itertools.chain(matrix, constants): if not is_constant_over_dt(entry, variables, dt_value): raise UnsupportedEquationsException( ('Expression "{}" is not guaranteed to be constant over a ' 'time step').format(sympy_to_str(entry))) symbols = [Symbol(variable, real=True) for variable in varnames] solution = sp.solve_linear_system(matrix.row_join(constants), *symbols) if solution is None or set(symbols) != set(solution.keys()): raise UnsupportedEquationsException('Cannot solve the given ' 'equations with this ' 'stateupdater.') b = sp.ImmutableMatrix([solution[symbol] for symbol in symbols]) # Solve the system dt = Symbol('dt', real=True, positive=True) try: A = (matrix * dt).exp() except NotImplementedError: raise UnsupportedEquationsException('Cannot solve the given ' 'equations with this ' 'stateupdater.') if method_options['simplify']: A = A.applyfunc(lambda x: sp.factor_terms(sp.cancel(sp.signsimp(x)))) C = sp.ImmutableMatrix(A * b) - b _S = sp.MatrixSymbol('_S', len(varnames), 1) updates = A * _S + C updates = updates.as_explicit() # The solution contains _S[0, 0], _S[1, 0] etc. for the state variables, # replace them with the state variable names abstract_code = [] for idx, (variable, update) in enumerate(zip(varnames, updates)): rhs = update if rhs.has(I, re, im): raise UnsupportedEquationsException('The solution to the linear system ' 'contains complex values ' 'which is currently not implemented.') for row_idx, varname in enumerate(varnames): rhs = rhs.subs(_S[row_idx, 0], varname) # Do not overwrite the real state variables yet, the update step # of other state variables might still need the original values abstract_code.append('_' + variable + ' = ' + sympy_to_str(rhs)) # Update the state variables for variable in varnames: abstract_code.append('{variable} = _{variable}'.format(variable=variable)) return '\n'.join(abstract_code)
def __call__(self, equations, variables=None, method_options=None): method_options = extract_method_options(method_options, {'simplify': True}) if equations.is_stochastic: raise UnsupportedEquationsException("Cannot solve stochastic " "equations with this state " "updater.") if variables is None: variables = {} # Get a representation of the ODE system in the form of # dX/dt = M*X + B varnames, matrix, constants = get_linear_system(equations, variables) # No differential equations, nothing to do (this occurs sometimes in the # test suite where the whole model is nothing more than something like # 'v : 1') if matrix.shape == (0, 0): return '' # Make sure that the matrix M is constant, i.e. it only contains # external variables or constant variables # Check for time dependence dt_value = variables['dt'].get_value( )[0] if 'dt' in variables else None # This will raise an error if we meet the symbol "t" anywhere # except as an argument of a locally constant function for entry in itertools.chain(matrix, constants): if not is_constant_over_dt(entry, variables, dt_value): raise UnsupportedEquationsException( f"Expression '{sympy_to_str(entry)}' is not guaranteed to be " f"constant over a time step.") symbols = [Symbol(variable, real=True) for variable in varnames] solution = sp.solve_linear_system(matrix.row_join(constants), *symbols) if solution is None or set(symbols) != set(solution.keys()): raise UnsupportedEquationsException("Cannot solve the given " "equations with this " "stateupdater.") b = sp.ImmutableMatrix([solution[symbol] for symbol in symbols]) # Solve the system dt = Symbol('dt', real=True, positive=True) try: A = (matrix * dt).exp() except NotImplementedError: raise UnsupportedEquationsException("Cannot solve the given " "equations with this " "stateupdater.") if method_options['simplify']: A = A.applyfunc( lambda x: sp.factor_terms(sp.cancel(sp.signsimp(x)))) C = sp.ImmutableMatrix(A * b) - b _S = sp.MatrixSymbol('_S', len(varnames), 1) updates = A * _S + C updates = updates.as_explicit() # The solution contains _S[0, 0], _S[1, 0] etc. for the state variables, # replace them with the state variable names abstract_code = [] for idx, (variable, update) in enumerate(zip(varnames, updates)): rhs = update if rhs.has(I, re, im): raise UnsupportedEquationsException( "The solution to the linear system " "contains complex values " "which is currently not implemented.") for row_idx, varname in enumerate(varnames): rhs = rhs.subs(_S[row_idx, 0], varname) # Do not overwrite the real state variables yet, the update step # of other state variables might still need the original values abstract_code.append(f"_{variable} = {sympy_to_str(rhs)}") # Update the state variables for variable in varnames: abstract_code.append(f"{variable} = _{variable}") return '\n'.join(abstract_code)
def test_signsimp(): e = x*(-x + 1) + x*(x - 1) assert signsimp(Eq(e, 0)) is S.true assert Abs(x - 1) == Abs(1 - x)
def test_issue_18991(): A = MatrixSymbol('A', 2, 2) assert signsimp(-A * A - A) == -A * A - A
def __call__(self, equations, variables=None, simplify=True): if equations.is_stochastic: raise UnsupportedEquationsException('Cannot solve stochastic ' 'equations with this state ' 'updater.') if variables is None: variables = {} # Get a representation of the ODE system in the form of # dX/dt = M*X + B varnames, matrix, constants = get_linear_system(equations, variables) # No differential equations, nothing to do (this occurs sometimes in the # test suite where the whole model is nothing more than something like # 'v : 1') if matrix.shape == (0, 0): return '' # Make sure that the matrix M is constant, i.e. it only contains # external variables or constant variables t = Symbol('t', real=True, positive=True) # Check for time dependence if 'dt' in variables: dt_value = variables['dt'].get_value()[0] # This will raise an error if we meet the symbol "t" anywhere # except as an argument of a locally constant function t = Symbol('t', real=True, positive=True) for entry in itertools.chain(matrix, constants): _check_for_locally_constant(entry, variables, dt_value, t) symbols = [Symbol(variable, real=True) for variable in varnames] solution = sp.solve_linear_system(matrix.row_join(constants), *symbols) if solution is None or set(symbols) != set(solution.keys()): raise UnsupportedEquationsException('Cannot solve the given ' 'equations with this ' 'stateupdater.') b = sp.ImmutableMatrix([solution[symbol] for symbol in symbols]).transpose() # Solve the system dt = Symbol('dt', real=True, positive=True) try: A = (matrix * dt).exp() except NotImplementedError: raise UnsupportedEquationsException('Cannot solve the given ' 'equations with this ' 'stateupdater.') if simplify: A = A.applyfunc( lambda x: sp.factor_terms(sp.cancel(sp.signsimp(x)))) C = sp.ImmutableMatrix([A.dot(b)]) - b _S = sp.MatrixSymbol('_S', len(varnames), 1) updates = A * _S + C.transpose() updates = updates.as_explicit() # The solution contains _S[0, 0], _S[1, 0] etc. for the state variables, # replace them with the state variable names abstract_code = [] for idx, (variable, update) in enumerate(zip(varnames, updates)): rhs = update for row_idx, varname in enumerate(varnames): rhs = rhs.subs(_S[row_idx, 0], varname) # Do not overwrite the real state variables yet, the update step # of other state variables might still need the original values abstract_code.append('_' + variable + ' = ' + sympy_to_str(rhs)) # Update the state variables for variable in varnames: abstract_code.append( '{variable} = _{variable}'.format(variable=variable)) return '\n'.join(abstract_code)
#u5--rear wheel ang. vel., u6--front wheel ang. vel. (fr, frstar)= kane.kanes_equations(forceList, bodyList) kdd = kane.kindiffdict() #path path1 = '/home/stefenyin' path2 = '/home/stefenstudy' if os.path.exists(path1): path = path1 else: path = path2 con_forces_noncontri = kane.auxiliary_eqs.applyfunc( lambda w: factor_terms(signsimp(w))).subs(kdd) CF = con_forces_noncontri """ #============================================================================== print('building a file and writing the equations into it') #----------------- print('building') path = path + '/bicycle/bi_equations_writing/con_force_nonslip_non_para_input.txt' try: f = open(path,'w') f.write('') f.close() del f
def test_signsimp(): e = x*(-x + 1) + x*(x - 1) assert signsimp(Eq(e, 0)) == True
def test_signsimp(): e = x * (-x + 1) + x * (x - 1) assert signsimp(Eq(e, 0)) is S.true assert Abs(x - 1) == Abs(1 - x) assert signsimp(y - x) == y - x assert signsimp(y - x, evaluate=False) == Mul(-1, x - y, evaluate=False)
def test_signsimp(): e = x * (-x + 1) + x * (x - 1) assert signsimp(Eq(e, 0)) is S.true assert Abs(x - 1) == Abs(1 - x)
def simp(exp): """Sign and trig simplify an expression. This can take a *long* time, especially when trying to render the expression in a notebook! """ return sym.signsimp(sym.trigsimp(exp))