def _interpolate(im, x, y, out_height, out_width): # *_f are floats num_batch, height, width, channels = im.shape height_f = T.cast(height, theano.config.floatX) width_f = T.cast(width, theano.config.floatX) # clip coordinates to [-1, 1] x = T.clip(x, -1, 1) y = T.clip(y, -1, 1) # scale coordinates from [-1, 1] to [0, width/height - 1] x = (x + 1) / 2 * (width_f - 1) y = (y + 1) / 2 * (height_f - 1) # obtain indices of the 2x2 pixel neighborhood surrounding the coordinates; # we need those in floatX for interpolation and in int64 for indexing. for # indexing, we need to take care they do not extend past the image. x0_f = T.floor(x) y0_f = T.floor(y) x1_f = x0_f + 1 y1_f = y0_f + 1 x0 = T.cast(x0_f, 'int64') y0 = T.cast(y0_f, 'int64') x1 = T.cast(T.minimum(x1_f, width_f - 1), 'int64') y1 = T.cast(T.minimum(y1_f, height_f - 1), 'int64') # The input is [num_batch, height, width, channels]. We do the lookup in # the flattened input, i.e [num_batch*height*width, channels]. We need # to offset all indices to match the flat version dim2 = width dim1 = width*height base = T.repeat( T.arange(num_batch, dtype='int64')*dim1, out_height*out_width) base_y0 = base + y0*dim2 base_y1 = base + y1*dim2 idx_a = base_y0 + x0 idx_b = base_y1 + x0 idx_c = base_y0 + x1 idx_d = base_y1 + x1 # use indices to lookup pixels for all samples im_flat = im.reshape((-1, channels)) Ia = im_flat[idx_a] Ib = im_flat[idx_b] Ic = im_flat[idx_c] Id = im_flat[idx_d] # calculate interpolated values wa = ((x1_f-x) * (y1_f-y)).dimshuffle(0, 'x') wb = ((x1_f-x) * (y-y0_f)).dimshuffle(0, 'x') wc = ((x-x0_f) * (y1_f-y)).dimshuffle(0, 'x') wd = ((x-x0_f) * (y-y0_f)).dimshuffle(0, 'x') output = T.sum([wa*Ia, wb*Ib, wc*Ic, wd*Id], axis=0) return output
def total_norm_constraint(tensor_vars, max_norm, epsilon=1e-7, return_norm=False): """Rescales a list of tensors based on their combined norm If the combined norm of the input tensors exceeds the threshold then all tensors are rescaled such that the combined norm is equal to the threshold. Scaling the norms of the gradients is often used when training recurrent neural networks [1]_. Parameters ---------- tensor_vars : List of TensorVariables. Tensors to be rescaled. max_norm : float Threshold value for total norm. epsilon : scalar, optional Value used to prevent numerical instability when dividing by very small or zero norms. return_norm : bool If true the total norm is also returned. Returns ------- tensor_vars_scaled : list of TensorVariables The scaled tensor variables. norm : Theano scalar The combined norms of the input variables prior to rescaling, only returned if ``return_norms=True``. Examples -------- >>> from lasagne.layers import InputLayer, DenseLayer >>> import lasagne >>> from lasagne.updates import sgd, total_norm_constraint >>> x = T.matrix() >>> y = T.ivector() >>> l_in = InputLayer((5, 10)) >>> l1 = DenseLayer(l_in, num_units=7, nonlinearity=T.nnet.softmax) >>> output = lasagne.layers.get_output(l1, x) >>> cost = T.mean(T.nnet.categorical_crossentropy(output, y)) >>> all_params = lasagne.layers.get_all_params(l1) >>> all_grads = T.grad(cost, all_params) >>> scaled_grads = total_norm_constraint(all_grads, 5) >>> updates = sgd(scaled_grads, all_params, learning_rate=0.1) Notes ----- The total norm can be used to monitor training. References ---------- .. [1] Sutskever, I., Vinyals, O., & Le, Q. V. (2014): Sequence to sequence learning with neural networks. In Advances in Neural Information Processing Systems (pp. 3104-3112). """ norm = T.sqrt(sum(T.sum(tensor ** 2) for tensor in tensor_vars)) dtype = np.dtype(theano.config.floatX).type target_norm = T.clip(norm, 0, dtype(max_norm)) multiplier = target_norm / (dtype(epsilon) + norm) tensor_vars_scaled = [step * multiplier for step in tensor_vars] if return_norm: return tensor_vars_scaled, norm else: return tensor_vars_scaled
def norm_constraint(tensor_var, max_norm, norm_axes=None, epsilon=1e-7): """Max weight norm constraints and gradient clipping This takes a TensorVariable and rescales it so that incoming weight norms are below a specified constraint value. Vectors violating the constraint are rescaled so that they are within the allowed range. Parameters ---------- tensor_var : TensorVariable Theano expression for update, gradient, or other quantity. max_norm : scalar This value sets the maximum allowed value of any norm in `tensor_var`. norm_axes : sequence (list or tuple) The axes over which to compute the norm. This overrides the default norm axes defined for the number of dimensions in `tensor_var`. When this is not specified and `tensor_var` is a matrix (2D), this is set to `(0,)`. If `tensor_var` is a 3D, 4D or 5D tensor, it is set to a tuple listing all axes but axis 0. The former default is useful for working with dense layers, the latter is useful for 1D, 2D and 3D convolutional layers. (Optional) epsilon : scalar, optional Value used to prevent numerical instability when dividing by very small or zero norms. Returns ------- TensorVariable Input `tensor_var` with rescaling applied to weight vectors that violate the specified constraints. Examples -------- >>> param = theano.shared( ... np.random.randn(100, 200).astype(theano.config.floatX)) >>> update = param + 100 >>> update = norm_constraint(update, 10) >>> func = theano.function([], [], updates=[(param, update)]) >>> # Apply constrained update >>> _ = func() >>> from lasagne.utils import compute_norms >>> norms = compute_norms(param.get_value()) >>> np.isclose(np.max(norms), 10) True Notes ----- When `norm_axes` is not specified, the axes over which the norm is computed depend on the dimensionality of the input variable. If it is 2D, it is assumed to come from a dense layer, and the norm is computed over axis 0. If it is 3D, 4D or 5D, it is assumed to come from a convolutional layer and the norm is computed over all trailing axes beyond axis 0. For other uses, you should explicitly specify the axes over which to compute the norm using `norm_axes`. """ ndim = tensor_var.ndim if norm_axes is not None: sum_over = tuple(norm_axes) elif ndim == 2: # DenseLayer sum_over = (0,) elif ndim in [3, 4, 5]: # Conv{1,2,3}DLayer sum_over = tuple(range(1, ndim)) else: raise ValueError("Unsupported tensor dimensionality {}." "Must specify `norm_axes`".format(ndim)) dtype = np.dtype(theano.config.floatX).type norms = T.sqrt(T.sum(T.sqr(tensor_var), axis=sum_over, keepdims=True)) target_norms = T.clip(norms, 0, dtype(max_norm)) constrained_output = tensor_var * (target_norms / (dtype(epsilon) + norms)) return constrained_output