def get_ct_constants(self): maxvalue = -2000 minvalue = 2000 for patient in enumerate(tqdm(self.ls_all_patients)): patient = patient[1] #print(patient) patient_uid = mt.get_serie_uid(patient) patient_nodules = self.df_annotations[self.df_annotations.file == patient] full_image_info = sitk.ReadImage(patient) full_scan = sitk.GetArrayFromImage(full_image_info) full_scan[full_scan < -1024] = -1024 segimage, segmask, flag = cd.segment_lung_mask(full_scan) vmax = full_scan[segmask == 1].max() vmin = full_scan[segmask == 1].min() if maxvalue < vmax: maxvalue = vmax maxfile = patient if minvalue > vmin: minvalue = vmin print("maxvalue:%d minvalue:%d" % (maxvalue, minvalue)) print("%s" % (maxfile)) return maxvalue, minvalue, maxfile
saver.restore(sess, net_file) start_time = time.time() #patient_evaluations = open(evaluation_path + "/patient_evaluations.log", "w") results = [] CPMs = [] CPMs2 = [] test_patients = all_patients[4:5] bt.filelist_store(all_patients, evaluation_path + "/patientfilelist.log") #random.shuffle(test_patients) for p in range(len(test_patients)): patient = test_patients[p] #patient = "./LUNA16/subset9/1.3.6.1.4.1.14519.5.2.1.6279.6001.212608679077007918190529579976.mhd" patient = "./LUNA16/subset9/1.3.6.1.4.1.14519.5.2.1.6279.6001.102681962408431413578140925249.mhd" #patient = "./TIANCHI_examples/LKDS-00005.mhd" uid = mt.get_serie_uid(patient) annotations = mt.get_annotations(uid, annotation_file) if len(annotations) == 0: print('%d/%d patient %s has no annotations, ignore it.' % (p + 1, len(test_patients), uid)) #patient_evaluations.write('%d/%d patient %s has no annotations, ignore it\n' %(p+1, len(test_patients), uid)) continue print('%d/%d processing patient:%s' % (p + 1, len(test_patients), uid)) full_image_info = sitk.ReadImage(patient) full_scan = sitk.GetArrayFromImage(full_image_info) origin = np.array(full_image_info.GetOrigin( ))[::-1] #the order of origin and old_spacing is initially [z,y,x] old_spacing = np.array(full_image_info.GetSpacing())[::-1] image, new_spacing = mt.resample(full_scan, old_spacing) #resample print('Resample Done. time:{}s'.format(time.time() - start_time))
def candidates_crop( self): #the term 'augment' is invalid when 'overbound' is True if os.access(self.output_path, os.F_OK): shutil.rmtree(self.output_path) os.makedirs(self.output_path) os.mkdir(self.nodules_npy_path) #训练用正样本路径 os.mkdir(self.nonnodule_npy_path) #训练用负样本路径 if not os.access(self.vision_path, os.F_OK): os.makedirs(self.vision_path) for patient in enumerate(tqdm(self.ls_all_patients)): patient = patient[1] #patient = './TIANCHI_data/val/LKDS-00002.mhd' print(patient) # 检查这个病人有没有大于3mm的结节 if patient not in self.df_annotations.file.values: print('Patient ' + patient + 'Not exist!') continue patient_uid = mt.get_serie_uid(patient) patient_nodules = self.df_annotations[self.df_annotations.file == patient] full_image_info = sitk.ReadImage(patient) full_scan = sitk.GetArrayFromImage(full_image_info) origin = np.array( full_image_info.GetOrigin())[::-1] #---获取“体素空间”中结节中心的坐标 old_spacing = np.array(full_image_info.GetSpacing() )[::-1] #---该CT在“世界空间”中各个方向上相邻单位的体素的间距 image, new_spacing = mt.resample(full_scan, old_spacing) #---重采样 print('resample done') v_centers = [] nonnodule_coords = [] nodule_coords = [] for index, nodule in patient_nodules.iterrows(): nodule_class = nodule.get("class") nodule_center = np.array( [nodule.coordZ, nodule.coordY, nodule.coordX]) #---获取“世界空间”中结节中心的坐标 v_center = np.rint( (nodule_center - origin) / new_spacing) #映射到“体素空间”中的坐标 v_center = np.array(v_center, dtype=int) v_centers.append([index, nodule_class, v_center]) if nodule_class == 1: nodule_coords.append(v_center) else: nonnodule_coords.append(v_center) #volume_regioned = cvm.view_coordinations(image, nonnodule_coords, window_size=56, reverse=False, slicewise=True, show=False) #np.save(self.vision_path+"/"+patient_uid+"_candidatenonnodule.npy", volume_regioned) #volume_regioned = cvm.view_coordinations(image, nodule_coords, window_size=10, reverse=False, # slicewise=False, show=False) #np.save(self.vision_path+"/"+patient_uid+"_candidatenodule.npy", volume_regioned) #---这一系列的if语句是根据“判断一个结节的癌性与否需要结合该结节周边位置的阴影和位置信息”而来,故每个结节都获取了比该结节尺寸略大的3D体素 #get annotations nodule window_half = int(BOX_SIZE / 2) num_translations = 1 for index, nodule_class, v_center in v_centers: invalid_loc = False if nodule_class == 0: for nodule_coord in nodule_coords: rpos = nodule_coord - v_center if abs(rpos[0]) <= window_half and abs( rpos[1]) <= window_half and abs( rpos[2]) <= window_half: # the negative sample is located in the positive location invalid_loc = True break if not invalid_loc: zyx_1 = v_center - window_half # 注意是: Z, Y, X zyx_2 = v_center + BOX_SIZE - window_half if mt.coord_overflow(zyx_1, image.shape) or mt.coord_overflow( zyx_2, image.shape): continue nodule_box = np.zeros([BOX_SIZE, BOX_SIZE, BOX_SIZE], np.int16) # ---nodule_box_size = 45 img_crop = image[zyx_1[0]:zyx_2[0], zyx_1[1]:zyx_2[1], zyx_1[2]:zyx_2[2]] # ---截取立方体 img_crop[img_crop < -1024] = -1024 # ---设置窗宽,小于-1024的体素值设置为-1024 try: nodule_box = img_crop[ 0:BOX_SIZE, 0:BOX_SIZE, 0:BOX_SIZE] # ---将截取的立方体置于nodule_box except: print("annotation error") continue if nodule_class == 0: self.save_nonnodule( nodule_box, patient_uid + "_" + str(index) + "_cc") #else: # self.save_annotations_nodule(nodule_box, patient_uid+"_"+str(index)+"_ob") print('Done for this patient!\n\n') print('Done for all!')
def annotations_crop( self, randsample=True, candsample=False, overbound=False, augment=False ): #the term 'augment' is invalid when 'overbound' is True if os.access(self.output_path, os.F_OK): shutil.rmtree(self.output_path) os.makedirs(self.output_path) os.mkdir(self.nodules_npy_path) #训练用正样本路径 os.mkdir(self.all_annotations_mhd_path) #检查用正样本路径 os.mkdir(self.nonnodule_npy_path) #训练用负样本路径 os.mkdir(self.no_annotation_mhd_path) #检查用负样本路径 if not os.access(self.vision_path, os.F_OK): os.makedirs(self.vision_path) for patient in enumerate(tqdm(self.ls_all_patients)): patient = patient[1] #patient = './LUNA16/subset9\\1.3.6.1.4.1.14519.5.2.1.6279.6001.114914167428485563471327801935.mhd' print(patient) # 检查这个病人有没有大于3mm的结节标注 if patient not in self.df_annotations.file.values: print('Patient ' + patient + 'Not exist!') continue patient_uid = mt.get_serie_uid(patient) patient_nodules = self.df_annotations[self.df_annotations.file == patient] full_image_info = sitk.ReadImage(patient) full_scan = sitk.GetArrayFromImage(full_image_info) origin = np.array( full_image_info.GetOrigin())[::-1] #---获取“体素空间”中结节中心的坐标 old_spacing = np.array(full_image_info.GetSpacing() )[::-1] #---该CT在“世界空间”中各个方向上相邻单位的体素的间距 image, new_spacing = mt.resample(full_scan, old_spacing) #---重采样 print('resample done') v_centers = [] center_coords = [] for index, nodule in patient_nodules.iterrows(): nodule_diameter = nodule.diameter_mm nodule_center = np.array( [nodule.coordZ, nodule.coordY, nodule.coordX]) #---获取“世界空间”中结节中心的坐标 v_center = np.rint( (nodule_center - origin) / new_spacing) #映射到“体素空间”中的坐标 v_center = np.array(v_center, dtype=int) v_centers.append([index, nodule_diameter, v_center]) center_coords.append(v_center) #volume_regioned = cvm.view_coordinations(image, center_coords, window_size=int(math.ceil(1.5*nodule_diameter)), reverse=False, slicewise=False, show=False) #np.save(self.vision_path+"/"+patient_uid+"_annotated.npy", volume_regioned) #---这一系列的if语句是根据“判断一个结节的癌性与否需要结合该结节周边位置的阴影和位置信息”而来,故每个结节都获取了比该结节尺寸略大的3D体素 #get annotations nodule window_half = int(BOX_SIZE / 2) if overbound: num_translations = 1 for index, nodule_diameter, v_center in v_centers: zyx_1 = v_center - BOX_SIZE # 注意是: Z, Y, X zyx_2 = v_center + BOX_SIZE if mt.coord_overflow(zyx_1, image.shape) or mt.coord_overflow( zyx_2, image.shape): continue nodule_box = np.zeros( [2 * BOX_SIZE, 2 * BOX_SIZE, 2 * BOX_SIZE], np.int16) # ---nodule_box_size = 45 img_crop = image[zyx_1[0]:zyx_2[0], zyx_1[1]:zyx_2[1], zyx_1[2]:zyx_2[2]] # ---截取立方体 img_crop[img_crop < -1024] = -1024 # ---设置窗宽,小于-1024的体素值设置为-1024 try: nodule_box = img_crop[ 0:2 * BOX_SIZE, 0:2 * BOX_SIZE, 0:2 * BOX_SIZE] # ---将截取的立方体置于nodule_box except: print("annotation error") continue #nodule_box[nodule_box == 0] = -1024 # ---将填充的0设置为-1000,可能有极少数的体素由0=>-1000,不过可以忽略不计 self.save_annotations_nodule( nodule_box, patient_uid + "_" + str(index) + "_ob") else: if not augment: scales = [1.0] translations = np.array([0, 0, 0]) else: scales = [0.8, 1.0, 1.25] #translations = np.array([[0,0,0],[0,0,1],[0,0,-1],[0,1,0],[0,-1,0],[1,0,0],[-1,0,0]], dtype=float) translations = np.array( [[0, 0, 0], [0, 0, 1], [0, 0, -1], [0, 1, 0], [0, math.sqrt(0.5), math.sqrt(0.5)], [0, math.sqrt(0.5), -math.sqrt(0.5)], [0, -1, 0], [0, -math.sqrt(0.5), math.sqrt(0.5)], [0, -math.sqrt(0.5), -math.sqrt(0.5)], [1, 0, 0], [math.sqrt(0.5), 0, math.sqrt(0.5)], [math.sqrt(0.5), 0, -math.sqrt(0.5)], [math.sqrt(0.5), math.sqrt(0.5), 0], [ math.sqrt(0.3333), math.sqrt(0.3333), math.sqrt(0.3333) ], [ math.sqrt(0.3333), math.sqrt(0.3333), -math.sqrt(0.3333) ], [math.sqrt(0.5), -math.sqrt(0.5), 0], [ math.sqrt(0.3333), -math.sqrt(0.3333), math.sqrt(0.3333) ], [ math.sqrt(0.3333), -math.sqrt(0.3333), -math.sqrt(0.3333) ], [-1, 0, 0], [-math.sqrt(0.5), 0, math.sqrt(0.5)], [-math.sqrt(0.5), 0, -math.sqrt(0.5)], [-math.sqrt(0.5), math.sqrt(0.5), 0], [ -math.sqrt(0.3333), math.sqrt(0.3333), math.sqrt(0.3333) ], [ -math.sqrt(0.3333), math.sqrt(0.3333), -math.sqrt(0.3333) ], [-math.sqrt(0.5), -math.sqrt(0.5), 0], [ -math.sqrt(0.3333), -math.sqrt(0.3333), math.sqrt(0.3333) ], [ -math.sqrt(0.3333), -math.sqrt(0.3333), -math.sqrt(0.3333) ]]) num_translations = 3 for index, nodule_diameter, v_center in v_centers: for s in range(len(scales)): rt = np.zeros(num_translations, dtype=int) rt[1:num_translations] = np.random.choice( range(1, len(translations)), num_translations - 1, False) rt = np.sort(rt) for t in range(rt.size): scale = scales[s] box_size = int(np.ceil(BOX_SIZE * scale)) window_size = int(box_size / 2) translation = np.array(nodule_diameter / 2 * translations[rt[t]] / new_spacing, dtype=int) tnz = translation.nonzero() if tnz[0].size == 0 and t != 0: continue zyx_1 = v_center + translation - window_size # 注意是: Z, Y, X zyx_2 = v_center + translation + box_size - window_size if mt.coord_overflow( zyx_1, image.shape) or mt.coord_overflow( zyx_2, image.shape): continue nodule_box = np.zeros( [BOX_SIZE, BOX_SIZE, BOX_SIZE], np.int16) # ---nodule_box_size = 45 img_crop = image[zyx_1[0]:zyx_2[0], zyx_1[1]:zyx_2[1], zyx_1[2]:zyx_2[2]] # ---截取立方体 img_crop[ img_crop < -1024] = -1024 # ---设置窗宽,小于-1024的体素值设置为-1024 if not augment or scale == 1.0: img_crop_rescaled = img_crop else: img_crop_rescaled, rescaled_spacing = mt.resample( img_crop, new_spacing, new_spacing * scale) try: padding_shape = ( img_crop_rescaled.shape - np.array( [BOX_SIZE, BOX_SIZE, BOX_SIZE])) / 2 nodule_box = img_crop_rescaled[ padding_shape[0]:padding_shape[0] + BOX_SIZE, padding_shape[1]:padding_shape[1] + BOX_SIZE, padding_shape[2]:padding_shape[2] + BOX_SIZE] # ---将截取的立方体置于nodule_box except: # f = open("log.txt", 'a') # traceback.print_exc(file=f) # f.flush() # f.close() print("annotation error") continue #nodule_box[nodule_box == 0] = -1024 # ---将填充的0设置为-1000,可能有极少数的体素由0=>-1000,不过可以忽略不计 self.save_annotations_nodule( nodule_box, patient_uid + "_" + str(index) + "_" + str(s * rt.size + t)) print("annotation sampling done") #get candidate annotation nodule candidate_coords = [] if candsample: segimage, segmask, flag = cd.segment_lung_mask(image) if segimage is not None: #nodule_matrix, index = cd.candidate_detection(segimage,flag) #cluster_labels = lc.seed_mask_cluster(nodule_matrix, cluster_size=1000) cluster_labels = lc.seed_volume_cluster( image, segmask, eliminate_lower_size=-1) segresult = lc.segment_color_vision(image, cluster_labels) cvm.view_CT(segresult) #lc.cluster_size_vision(cluster_labels) exit() candidate_coords, _ = lc.cluster_centers(cluster_labels) #candidate_coords = lc.cluster_center_filter(image, candidate_coords) #the coordination order is [z,y,x] print("candidate number:%d" % (len(candidate_coords))) #volume_regioned = cv.view_coordinations(image, candidate_coords, window_size=10, reverse=False, slicewise=True, show=False) #mt.write_mhd_file(self.vision_path+"/"+patient_uid+"_candidate.mhd", volume_regioned, volume_regioned.shape[::-1]) for cc in range(len(candidate_coords)): candidate_center = candidate_coords[cc] invalid_loc = False if mt.coord_overflow(candidate_center - window_half, image.shape) or mt.coord_overflow( candidate_center + BOX_SIZE - window_half, image.shape): invalid_loc = True continue for index_search, nodule_diameter_search, v_center_search in v_centers: rpos = v_center_search - candidate_center if abs(rpos[0]) < window_half and abs( rpos[1] ) < window_half and abs( rpos[2] ) < window_half: #the negative sample is located in the positive location invalid_loc = True break if not invalid_loc: zyx_1 = candidate_center - window_half zyx_2 = candidate_center + BOX_SIZE - window_half nodule_box = np.zeros( [BOX_SIZE, BOX_SIZE, BOX_SIZE], np.int16) #---nodule_box_size = 45 img_crop = image[zyx_1[0]:zyx_2[0], zyx_1[1]:zyx_2[1], zyx_1[2]:zyx_2[2]] #---截取立方体 img_crop[img_crop < -1024] = -1024 #---设置窗宽,小于-1000的体素值设置为-1000 if img_crop.shape[0] != BOX_SIZE | img_crop.shape[ 1] != BOX_SIZE | img_crop.shape[2] != BOX_SIZE: print("error in resmapleing shape") try: nodule_box[ 0:BOX_SIZE, 0:BOX_SIZE, 0: BOX_SIZE] = img_crop # ---将截取的立方体置于nodule_box except: print("random error") continue #nodule_box[nodule_box == 0] = -1024#---将填充的0设置为-1000,可能有极少数的体素由0=>-1000,不过可以忽略不计 self.save_nonnodule(nodule_box, patient_uid + "_cc_" + str(cc)) print("candidate sampling done") #get random annotation nodule if randsample: if overbound: augnum = 100 elif augment: augnum = len(scales) * num_translations else: augnum = 1 if augnum * len(v_centers) > len(candidate_coords): randnum = augnum * len(v_centers) - len(candidate_coords) else: randnum = len(candidate_coords) for rc in range( randnum ): #the random samples is one-to-one number of nodules #index, nodule_diameter, v_center = v_centers[rc] rand_center = np.array([0, 0, 0]) # 注意是: Z, Y, X invalid_loc = True candidate_overlap = True while invalid_loc: invalid_loc = False candidate_overlap = False for axis in range(rand_center.size): rand_center[axis] = np.random.randint( 0, image.shape[axis]) if mt.coord_overflow(rand_center - window_half, image.shape) or mt.coord_overflow( rand_center + BOX_SIZE - window_half, image.shape): invalid_loc = True continue if 'segmask' in dir() and not ( segmask is None ) and not segmask[rand_center[0], rand_center[1], rand_center[2]]: invalid_loc = True continue for index_search, nodule_diameter_search, v_center_search in v_centers: rpos = v_center_search - rand_center if abs(rpos[0]) < window_half and abs( rpos[1] ) < window_half and abs( rpos[2] ) < window_half: #the negative sample is located in the positive location invalid_loc = True break for candidate_coord in candidate_coords: rpos = candidate_coord - rand_center if abs(rpos[0]) < window_half and abs( rpos[1] ) < window_half and abs( rpos[2] ) < window_half: #the negative sample is located in the pre-extracted candidate locations candidate_overlap = True break if candidate_overlap: continue zyx_1 = rand_center - window_half zyx_2 = rand_center + BOX_SIZE - window_half nodule_box = np.zeros([BOX_SIZE, BOX_SIZE, BOX_SIZE], np.int16) #---nodule_box_size = 45 img_crop = image[zyx_1[0]:zyx_2[0], zyx_1[1]:zyx_2[1], zyx_1[2]:zyx_2[2]] #---截取立方体 img_crop[ img_crop < -1024] = -1024 #---设置窗宽,小于-1000的体素值设置为-1000 if img_crop.shape[0] != BOX_SIZE | img_crop.shape[ 1] != BOX_SIZE | img_crop.shape[2] != BOX_SIZE: print("error in resmapleing shape") try: nodule_box[ 0:BOX_SIZE, 0:BOX_SIZE, 0:BOX_SIZE] = img_crop # ---将截取的立方体置于nodule_box except: # f = open("log.txt", 'a') # traceback.print_exc(file=f) # f.flush() # f.close() print("candidate error") continue #nodule_box[nodule_box == 0] = -1024#---将填充的0设置为-1000,可能有极少数的体素由0=>-1000,不过可以忽略不计 self.save_nonnodule(nodule_box, patient_uid + "_rc_" + str(rc)) print("random sampling done") print('Done for this patient!\n\n') print('Done for all!')