def save_nonnodule(self, nodule_crop, store_name, mhd_store=False): np.save( os.path.join(self.nonnodule_npy_path, store_name + "_nonannotation.npy"), nodule_crop) if mhd_store: mt.write_mhd_file( self.no_annotation_mhd_path + store_name + "_nonannotation.mhd", nodule_crop, nodule_crop.shape)
nodule_matrix, cindex = cd.candidate_detection(segimage) cluster_labels = lc.seed_volume_cluster(nodule_matrix, cluster_size=30, result_vision=False) print('Clustering Done') cluster_labels_merged = lc.cluster_merge(segimage, cluster_labels) print('Clusters Merged') lc.view_segment(image, cluster_labels_merged) candidate_coords = lc.cluster_centers(cluster_labels) volume_candidated = cv.view_coordinations(image, candidate_coords, window_size=10, reverse=False, slicewise=True, show=True) mt.write_mhd_file(vision_path + "/" + uid + "_candidate.mhd", volume_candidated, volume_candidated.shape[::-1]) print('Candidate Done') exit() window_prehalf = int(WINDOW_SIZE / 2) window_afterhalf = WINDOW_SIZE - window_prehalf image_padded = MIN_BOUND * np.ones( (image.shape[0] + WINDOW_SIZE, image.shape[1] + WINDOW_SIZE, image.shape[2] + WINDOW_SIZE), dtype=int) image_padded[window_prehalf:window_prehalf + image.shape[0], window_prehalf:window_prehalf + image.shape[1], window_prehalf:window_prehalf + image.shape[2]] = image nodule_centers = [] print('candidate number:%d' % (len(candidate_coords))) for tb in range(0, len(candidate_coords), CANDIDATE_BATCH):