def main(): global measurement_config, histogram_files global electron_fit_variables, muon_fit_variables, fit_variable_properties global b_tag_bin, category, histogram_files, variables global b_tag_bin_ctl title_template = 'CMS Preliminary, $\mathcal{L} = %.1f$ fb$^{-1}$ at $\sqrt{s}$ = %d TeV \n %s' e_title = title_template % ( measurement_config.new_luminosity / 1000., measurement_config.centre_of_mass_energy, 'e+jets, $\geq$ 4 jets' ) met_type = 'patType1CorrectedPFMet' for variable in variables: variable_bins = variable_bins_ROOT[variable] histogram_template = get_histogram_template( variable ) for fit_variable in electron_fit_variables: if '_bl' in fit_variable: b_tag_bin_ctl = '1orMoreBtag' else: b_tag_bin_ctl = '0orMoreBtag' save_path = 'plots/%dTeV/fit_variables/%s/%s/' % (measurement_config.centre_of_mass_energy, variable, fit_variable) make_folder_if_not_exists(save_path) make_folder_if_not_exists(save_path + 'qcd/') make_folder_if_not_exists(save_path + 'vjets/') for bin_range in variable_bins: params = {'met_type': met_type, 'bin_range':bin_range, 'fit_variable':fit_variable, 'b_tag_bin':b_tag_bin, 'variable':variable} fit_variable_distribution = histogram_template % params qcd_fit_variable_distribution = fit_variable_distribution.replace( 'Ref selection', 'QCDConversions' ) qcd_fit_variable_distribution = qcd_fit_variable_distribution.replace( b_tag_bin, b_tag_bin_ctl ) histograms = get_histograms_from_files( [fit_variable_distribution, qcd_fit_variable_distribution], histogram_files ) plot_fit_variable( histograms, fit_variable, variable, bin_range, fit_variable_distribution, qcd_fit_variable_distribution, e_title, save_path ) compare_qcd_control_regions(variable, met_type, e_title) compare_vjets_btag_regions(variable, met_type, e_title)
def get_fit_inputs(template, variable, channel): inputs = {} for var_bin in variable_bins_ROOT[variable]: print var_bin histogram = template % var_bin histograms = get_histograms_from_files([histogram], histogram_files) for sample in [channel, "TTJet", "V+Jets", "SingleTop"]: n_bins = histograms[sample][histogram].GetNbinsX() error = Double(0) integral = histograms[sample][histogram].IntegralAndError(1, n_bins, error) if inputs.has_key(sample): inputs[sample].append((integral, error)) else: inputs[sample] = [(integral, error)] inputs["QCD"] = [] for data, ttjet, vjets, singletop in zip(inputs[channel], inputs["TTJet"], inputs["V+Jets"], inputs["SingleTop"]): qcd = ufloat(data) - ufloat(ttjet) - ufloat(vjets) - ufloat(singletop) inputs["QCD"].append((qcd.nominal_value, qcd.std_dev)) print inputs return inputs
def compare_vjets_btag_regions( variable = 'MET', met_type = 'patType1CorrectedPFMet', title = 'Untitled'): ''' Compares the V+Jets template in different b-tag bins''' global fit_variable_properties, b_tag_bin, save_as, b_tag_bin_ctl b_tag_bin_ctl = '0orMoreBtag' variable_bins = variable_bins_ROOT[variable] histogram_template = get_histogram_template( variable ) for fit_variable in electron_fit_variables: if '_bl' in fit_variable: b_tag_bin_ctl = '1orMoreBtag' else: b_tag_bin_ctl = '0orMoreBtag' save_path = 'plots/fit_variables/%dTeV/%s/%s/' % (measurement_config.centre_of_mass_energy, variable, fit_variable) make_folder_if_not_exists(save_path + '/vjets/') histogram_properties = Histogram_properties() histogram_properties.x_axis_title = fit_variable_properties[fit_variable]['x-title'] histogram_properties.y_axis_title = fit_variable_properties[fit_variable]['y-title'] histogram_properties.y_axis_title = histogram_properties.y_axis_title.replace('Events', 'a.u.') histogram_properties.x_limits = [fit_variable_properties[fit_variable]['min'], fit_variable_properties[fit_variable]['max']] histogram_properties.title = title + ', ' + b_tag_bins_latex[b_tag_bin_ctl] for bin_range in variable_bins: params = {'met_type': met_type, 'bin_range':bin_range, 'fit_variable':fit_variable, 'b_tag_bin':b_tag_bin, 'variable':variable} fit_variable_distribution = histogram_template % params fit_variable_distribution_ctl = fit_variable_distribution.replace( b_tag_bin, b_tag_bin_ctl ) # format: histograms['data'][qcd_fit_variable_distribution] histograms = get_histograms_from_files( [fit_variable_distribution, fit_variable_distribution_ctl], {'V+Jets' : histogram_files['V+Jets']} ) prepare_histograms( histograms, rebin = fit_variable_properties[fit_variable]['rebin'], scale_factor = measurement_config.luminosity_scale ) histogram_properties.name = variable + '_' + bin_range + '_' + fit_variable + '_' + b_tag_bin_ctl + '_VJets_template_comparison' histograms['V+Jets'][fit_variable_distribution].Scale(1/histograms['V+Jets'][fit_variable_distribution].Integral()) histograms['V+Jets'][fit_variable_distribution_ctl].Scale(1/histograms['V+Jets'][fit_variable_distribution_ctl].Integral()) compare_measurements(models = {'no b-tag' : histograms['V+Jets'][fit_variable_distribution_ctl]}, measurements = {'$>=$ 2 b-tags': histograms['V+Jets'][fit_variable_distribution]}, show_measurement_errors = True, histogram_properties = histogram_properties, save_folder = save_path + '/vjets/', save_as = save_as)
path_to_files = '/storage/TopQuarkGroup/results/histogramfiles/AN-11-265_V1/' lumi = 1959.75 data = 'data' pfmuon = '' histogram_files = { 'TTJet': path_to_files + 'TTJet_%spb_PFElectron_%sPF2PATJets_PFMET.root' % (str(lumi), pfmuon), 'data' : path_to_files + '%s_%spb_PFElectron_%sPF2PATJets_PFMET.root' % (data, str(lumi), pfmuon), 'WJets': path_to_files + 'WJetsToLNu_%spb_PFElectron_%sPF2PATJets_PFMET.root' % (str(lumi), pfmuon), 'ZJets': path_to_files + 'DYJetsToLL_%spb_PFElectron_%sPF2PATJets_PFMET.root' % (str(lumi), pfmuon), 'QCD': path_to_files + 'QCD_%spb_PFElectron_%sPF2PATJets_PFMET.root' % (str(lumi), pfmuon), 'SingleTop': path_to_files + 'SingleTop_%spb_PFElectron_%sPF2PATJets_PFMET.root' % (str(lumi), pfmuon), } control_region = 'QCDStudy/PFIsolation_controlRegion_0btag' histograms = get_histograms_from_files([control_region], histogram_files) prepare_histograms(histograms, rebin=rebin) nonQCDMC = histograms['TTJet'][control_region] + histograms['WJets'][control_region] + histograms['ZJets'][control_region] + histograms['SingleTop'][control_region] make_control_region_data_mc_comparision(histograms, control_region, 'PFIsolation_0btag', x_label='relative isolation', x_min=0, x_max=1.6, y_label='Events/0.1') make_control_region_comparison(histograms['data'][control_region], histograms['QCD'][control_region], 'data', 'QCD MC', 'PFIsolation_0btag', x_label='relative isolation', x_min=0, x_max=1.6, y_label='Events/0.1', y_max = 0.4) make_control_region_comparison(histograms['data'][control_region] - nonQCDMC, histograms['QCD'][control_region],
SingleTop_file = path_to_files + 'central/SingleTop_5050pb_PFElectron_PFMuon_PF2PATJets_PFMET.root' W1Jet_file = path_to_files + 'central/W1Jet_5050pb_PFElectron_PFMuon_PF2PATJets_PFMET.root' W2Jets_file = path_to_files + 'central/W2Jets_5050pb_PFElectron_PFMuon_PF2PATJets_PFMET.root' W3Jets_file = path_to_files + 'central/W3Jets_5050pb_PFElectron_PFMuon_PF2PATJets_PFMET.root' W4Jets_file = path_to_files + 'central/W4Jets_5050pb_PFElectron_PFMuon_PF2PATJets_PFMET.root' ZJets_file = path_to_files + 'central/DYJetsToLL_5050pb_PFElectron_PFMuon_PF2PATJets_PFMET.root' data_file_electron = path_to_files + 'central/ElectronHad_5050pb_PFElectron_PFMuon_PF2PATJets_PFMET.root' data_file_muon = path_to_files + 'central/SingleMu_5050pb_PFElectron_PFMuon_PF2PATJets_PFMET.root' # electron_QCD_file = File(path_to_files + 'QCD_data_electron.root') # muon_QCD_file = File(path_to_files + 'QCD_data_muon.root') histograms_of_interest = csm.get_histograms_of_interest_7TeV() #get histograms histograms = get_histograms_from_files(histograms_of_interest, {'data':data_file_electron}) #store normalisation of all samples #for now OK. output_files = {} luminosity = 5050 for b_tag_bin in summations.all_b_tag_bins: file_name = "TTbar_plus_X_analysis_%dpbinv_%s.root" %(luminosity, b_tag_bin) output_files[b_tag_bin] = File(file_name, "recreate") #sum samples up #write them all up for sample, histogram_list in histograms.iteritems(): for histogram_path, histogram in histogram_list.iteritems(): directory, histogram_name, b_tag_bin = get_histogram_info_tuple(histogram_path)
data = 'SingleElectron' pfmuon = 'PFMuon_' histogram_files = { 'data' : path_to_data + '%s_%spb_PFElectron_%sPF2PATJets_PFMET.root' % (data, str(lumi), pfmuon), 'TTJet': path_to_files + 'TTJet_%spb_PFElectron_%sPF2PATJets_PFMET%s.root' % (str(lumi), pfmuon, suffix), 'WJets': path_to_files + 'WJets_%spb_PFElectron_%sPF2PATJets_PFMET%s.root' % (str(lumi), pfmuon, suffix), 'ZJets': path_to_files + 'DYJetsToLL_%spb_PFElectron_%sPF2PATJets_PFMET%s.root' % (str(lumi), pfmuon, suffix), 'QCD': path_to_files + 'QCD_%spb_PFElectron_%sPF2PATJets_PFMET%s.root' % (str(lumi), pfmuon, suffix), 'SingleTop': path_to_files + 'SingleTop_%spb_PFElectron_%sPF2PATJets_PFMET%s.root' % (str(lumi), pfmuon, suffix) } electron_selection = 'EventCount/TTbarEplusJetsRefSelection' muon_selection = 'EventCount/TTbarMuPlusJetsRefSelection' cuts = cuts_electrons histograms = get_histograms_from_files([electron_selection], histogram_files) print '='*50 printCutFlow(histograms, electron_selection) data = 'SingleMu' histogram_files['data'] = path_to_data + '%s_%spb_PFElectron_%sPF2PATJets_PFMET.root' % (data, str(lumi), pfmuon) histogram_files['QCD'] = path_to_files + 'QCD_Muon_%spb_PFElectron_%sPF2PATJets_PFMET%s.root' % (str(lumi), pfmuon, suffix) histograms = get_histograms_from_files([muon_selection], histogram_files) cuts = cuts_muons print '='*50 printCutFlow(histograms, muon_selection)
histogram_files = { 'TTJet': path_to_files + 'TTJet_%spb_PFElectron_%sPF2PATJets_PFMET.root' % (str(lumi), pfmuon), 'data' : path_to_files + '%s_%spb_PFElectron_%sPF2PATJets_PFMET.root' % (data, str(lumi), pfmuon), 'WJets': path_to_files + 'WJetsToLNu_%spb_PFElectron_%sPF2PATJets_PFMET.root' % (str(lumi), pfmuon), 'ZJets': path_to_files + 'DYJetsToLL_%spb_PFElectron_%sPF2PATJets_PFMET.root' % (str(lumi), pfmuon), 'QCD': '/storage/TopQuarkGroup/results/histogramfiles/AN-11-265_V2/QCD_%spb_PFElectron_%sPF2PATJets_PFMET.root' % (str(1959.75), ''), 'SingleTop': path_to_files + 'SingleTop_%spb_PFElectron_%sPF2PATJets_PFMET.root' % (str(lumi), pfmuon), } control_region_1 = 'topReconstruction/backgroundShape/mttbar_3jets_conversions_withMETAndAsymJets_0btag' control_region_2 = 'topReconstruction/backgroundShape/mttbar_3jets_antiIsolated_withMETAndAsymJets_0btag' control_region_3 = 'topReconstruction/backgroundShape/mttbar_conversions_withMETAndAsymJets_0btag' control_region_4 = 'topReconstruction/backgroundShape/mttbar_antiIsolated_withMETAndAsymJets_0btag' histograms_to_read = [control_region_1, control_region_2, control_region_3, control_region_4] histograms = get_histograms_from_files(histograms_to_read, histogram_files) prepare_histograms(histograms, rebin=rebin) for _,histogram in histograms['QCD'].iteritems(): histogram.Scale(5028./1959.75) make_control_region_data_mc_comparision(histograms, control_region_1, 'mttbar_3jets_conversions_withMETAndAsymJets_0btag') make_control_region_data_mc_comparision(histograms, control_region_2, 'mttbar_3jets_antiIsolated_withMETAndAsymJets_0btag') make_control_region_data_mc_comparision(histograms, control_region_3, 'mttbar_conversions_withMETAndAsymJets_0btag') make_control_region_data_mc_comparision(histograms, control_region_4, 'mttbar_antiIsolated_withMETAndAsymJets_0btag') make_control_region_comparison(histograms['data'][control_region_1], histograms['data'][control_region_2], 'conversions', 'non-isolated electrons', 'mttbar_3jets_withMETAndAsymJets_0btag') make_control_region_comparison(histograms['data'][control_region_3],
def do_shape_check( channel, control_region_1, control_region_2, variable, normalisation, title, x_title, y_title, x_limits, y_limits, name_region_1="conversions", name_region_2="non-isolated electrons", name_region_3="fit results", rebin=1, ): global b_tag_bin # QCD shape comparison if channel == "electron": histograms = get_histograms_from_files([control_region_1, control_region_2], histogram_files) region_1 = ( histograms[channel][control_region_1].Clone() - histograms["TTJet"][control_region_1].Clone() - histograms["V+Jets"][control_region_1].Clone() - histograms["SingleTop"][control_region_1].Clone() ) region_2 = ( histograms[channel][control_region_2].Clone() - histograms["TTJet"][control_region_2].Clone() - histograms["V+Jets"][control_region_2].Clone() - histograms["SingleTop"][control_region_2].Clone() ) region_1.Rebin(rebin) region_2.Rebin(rebin) histogram_properties = Histogram_properties() histogram_properties.name = "QCD_control_region_comparison_" + channel + "_" + variable + "_" + b_tag_bin histogram_properties.title = title + ", " + b_tag_bins_latex[b_tag_bin] histogram_properties.x_axis_title = x_title histogram_properties.y_axis_title = "arbitrary units/(0.1)" histogram_properties.x_limits = x_limits histogram_properties.y_limits = y_limits[0] histogram_properties.mc_error = 0.0 histogram_properties.legend_location = "upper right" make_control_region_comparison( region_1, region_2, name_region_1=name_region_1, name_region_2=name_region_2, histogram_properties=histogram_properties, save_folder=output_folder, ) # QCD shape comparison to fit results histograms = get_histograms_from_files([control_region_1], histogram_files) region_1_tmp = ( histograms[channel][control_region_1].Clone() - histograms["TTJet"][control_region_1].Clone() - histograms["V+Jets"][control_region_1].Clone() - histograms["SingleTop"][control_region_1].Clone() ) region_1 = rebin_asymmetric(region_1_tmp, bin_edges[variable]) fit_results_QCD = normalisation[variable]["QCD"] region_2 = value_error_tuplelist_to_hist(fit_results_QCD, bin_edges[variable]) histogram_properties = Histogram_properties() histogram_properties.name = ( "QCD_control_region_comparison_" + channel + "_" + variable + "_fits_with_conversions_" + b_tag_bin ) histogram_properties.title = title + ", " + b_tag_bins_latex[b_tag_bin] histogram_properties.x_axis_title = x_title histogram_properties.y_axis_title = "arbitrary units/(0.1)" histogram_properties.x_limits = x_limits histogram_properties.y_limits = y_limits[1] histogram_properties.mc_error = 0.0 histogram_properties.legend_location = "upper right" make_control_region_comparison( region_1, region_2, name_region_1=name_region_1, name_region_2=name_region_3, histogram_properties=histogram_properties, save_folder=output_folder, ) histograms = get_histograms_from_files([control_region_2], histogram_files) region_1_tmp = ( histograms[channel][control_region_2].Clone() - histograms["TTJet"][control_region_2].Clone() - histograms["V+Jets"][control_region_2].Clone() - histograms["SingleTop"][control_region_2].Clone() ) region_1 = rebin_asymmetric(region_1_tmp, bin_edges[variable]) fit_results_QCD = normalisation[variable]["QCD"] region_2 = value_error_tuplelist_to_hist(fit_results_QCD, bin_edges[variable]) histogram_properties = Histogram_properties() histogram_properties.name = ( "QCD_control_region_comparison_" + channel + "_" + variable + "_fits_with_noniso_" + b_tag_bin ) histogram_properties.title = title + ", " + b_tag_bins_latex[b_tag_bin] histogram_properties.x_axis_title = x_title histogram_properties.y_axis_title = "arbitrary units/(0.1)" histogram_properties.x_limits = x_limits histogram_properties.y_limits = y_limits[1] histogram_properties.mc_error = 0.0 histogram_properties.legend_location = "upper right" make_control_region_comparison( region_1, region_2, name_region_1=name_region_2, name_region_2=name_region_3, histogram_properties=histogram_properties, save_folder=output_folder, )
def compare_qcd_control_regions( variable = 'MET', met_type = 'patType1CorrectedPFMet', title = 'Untitled'): ''' Compares the templates from the control regions in different bins of the current variable''' global fit_variable_properties, b_tag_bin, save_as, b_tag_bin_ctl variable_bins = variable_bins_ROOT[variable] histogram_template = get_histogram_template( variable ) for fit_variable in electron_fit_variables: all_hists = {} inclusive_hist = None if '_bl' in fit_variable: b_tag_bin_ctl = '1orMoreBtag' else: b_tag_bin_ctl = '0orMoreBtag' save_path = 'plots/fit_variables/%dTeV/%s/%s/' % (measurement_config.centre_of_mass_energy, variable, fit_variable) make_folder_if_not_exists(save_path + '/qcd/') max_bins = 3 for bin_range in variable_bins[0:max_bins]: params = {'met_type': met_type, 'bin_range':bin_range, 'fit_variable':fit_variable, 'b_tag_bin':b_tag_bin, 'variable':variable} fit_variable_distribution = histogram_template % params qcd_fit_variable_distribution = fit_variable_distribution.replace( 'Ref selection', 'QCDConversions' ) qcd_fit_variable_distribution = qcd_fit_variable_distribution.replace( b_tag_bin, b_tag_bin_ctl ) # format: histograms['data'][qcd_fit_variable_distribution] histograms = get_histograms_from_files( [qcd_fit_variable_distribution], histogram_files ) prepare_histograms( histograms, rebin = fit_variable_properties[fit_variable]['rebin'], scale_factor = measurement_config.luminosity_scale ) histograms_for_cleaning = {'data':histograms['data'][qcd_fit_variable_distribution], 'V+Jets':histograms['V+Jets'][qcd_fit_variable_distribution], 'SingleTop':histograms['SingleTop'][qcd_fit_variable_distribution], 'TTJet':histograms['TTJet'][qcd_fit_variable_distribution]} qcd_from_data = clean_control_region( histograms_for_cleaning, subtract = ['TTJet', 'V+Jets', 'SingleTop'] ) # clean all_hists[bin_range] = qcd_from_data # create the inclusive distributions inclusive_hist = deepcopy(all_hists[variable_bins[0]]) for bin_range in variable_bins[1:max_bins]: inclusive_hist += all_hists[bin_range] for bin_range in variable_bins[0:max_bins]: if not all_hists[bin_range].Integral() == 0: all_hists[bin_range].Scale(1/all_hists[bin_range].Integral()) # normalise all histograms inclusive_hist.Scale(1/inclusive_hist.Integral()) # now compare inclusive to all bins histogram_properties = Histogram_properties() histogram_properties.x_axis_title = fit_variable_properties[fit_variable]['x-title'] histogram_properties.y_axis_title = fit_variable_properties[fit_variable]['y-title'] histogram_properties.y_axis_title = histogram_properties.y_axis_title.replace('Events', 'a.u.') histogram_properties.x_limits = [fit_variable_properties[fit_variable]['min'], fit_variable_properties[fit_variable]['max']] # histogram_properties.y_limits = [0, 0.5] histogram_properties.title = title + ', ' + b_tag_bins_latex[b_tag_bin_ctl] histogram_properties.name = variable + '_' + fit_variable + '_' + b_tag_bin_ctl + '_QCD_template_comparison' measurements = {bin_range + ' GeV': histogram for bin_range, histogram in all_hists.iteritems()} measurements = OrderedDict(sorted(measurements.items())) compare_measurements(models = {'inclusive' : inclusive_hist}, measurements = measurements, show_measurement_errors = True, histogram_properties = histogram_properties, save_folder = save_path + '/qcd/', save_as = save_as)