def straight_flames(): import os os.chdir(os.path.dirname(os.path.abspath(__file__))) model = Model(n_characters, n_hidden, n_characters, n_layers) model.load("models/wtchrrnn.pt") return " ".join(model.generate("Add ", 40).split(" ")[:-1]).strip() + "."
else: y = 0 h += 2 * CropPadding if x > CropPadding: x = x - CropPadding else: x = 0 w += 2 * CropPadding return [x, y, w, h] if __name__ == '__main__': # Change working directory os.chdir(os.path.dirname(os.path.realpath(__file__))) cap = cv2.VideoCapture(0) model = Model() model.load() # Get Cascade Classifier cascade = cv2.CascadeClassifier(cascade_path) isme = 0 notme = 0 nDelay = 0 # Run window in other thread cv2.startWindowThread() while True: _, frame = cap.read()
from train import Model from preprocess import constructTensors model = Model() model.load('parameters') Input, Output = constructTensors() print(model.forward(Input)) print(Output)
if file.endswith('.jpg') or file.endswith('.png'): print('test %s' % file) file_path = os.path.abspath(os.path.join(path, file)) image = read_image(file_path) result = model.predict(image) index = np.argmax(result) print(classes[index], result[index]) if __name__ == '__main__': classes = [] parser = argparse.ArgumentParser() parser.add_argument('--predict_dir', type=str, help='folder of images') args = parser.parse_args() if args.predict_dir: model = Model() try: model.load(file_path=args.predict_dir + '\model.h5') with open(args.predict_dir + '\labels.txt', 'r') as f: for line in f.readlines(): classes.append(line.strip()) except OSError as e: print( "<--------------------Unable to open file-------------------->\n", e) else: prediction(args.predict_dir, classes) else: print( 'Input no found\nTry "python predict.py -h" for more information')
model = Model(n_characters, n_hidden, n_characters, n_layers) model.load("models/wtchrrnn.pt") return " ".join(model.generate("Add ", 40).split(" ")[:-1]).strip() + "." if __name__ == "__main__": argparser = argparse.ArgumentParser() argparser.add_argument('--model', type=str, default="save/char-rnn-gru.pt", help="Path to trained model") argparser.add_argument( '--prime', type=str, required=True, help="Prime string to predict next sequence of characters") argparser.add_argument('--len', type=int, default=1000, help="Predict string length") args = argparser.parse_args() warnings.filterwarnings("ignore") model = Model(n_characters, n_hidden, n_characters, n_layers) model.load(args.model) print(model.generate(args.prime, args.len))