cv2.imshow("preview", frame) #facerect = cascade.detectMultiScale(frame_gray, scaleFactor=1.01, minNeighbors=3, minSize=(3, 3)) if len(facerect) > 0: print('face detected') color = (255, 255, 255) # 白 for rect in facerect: # 创建围绕检测的面部的矩形 #cv2.rectangle(frame, tuple(rect[0:2]), tuple(rect[0:2] + rect[2:4]), color, thickness=2) x, y = rect[0:2] width, height = rect[2:4] image = frame[y - 10:y + height, x:x + width] result = model.predict(image) if result == 0: # boss print('Boss is approaching') #show_image() else: print('Not boss') #10msec键输入等待 k = cv2.waitKey(100) #Esc退出按下该键 if k == 27: break #退出拍摄 cap.release() cv2.destroyAllWindows()
cv2.imshow('Recognizing', buffer) #cv2.namedWindow('Recognizing', cv2.WINDOW_AUTOSIZE | cv2.WINDOW_KEEPRATIO | cv2.WINDOW_GUI_EXPANDED) for rect in facerect: [x, y, width, height] = extendFaceRect(rect) # Crop the face if GRAY_MODE == True: img_predict = frame_gray[y:y + height, x:x + width] else: img_predict = frame[y:y + height, x:x + width] # Predict face if GRAY_MODE == True: result = model.predict(img_predict, img_channels=1) else: result = model.predict(img_predict) if DEBUG_OUTPUT == True: outimg = frame[y:y + height, x:x + width] if result == 0: write_image( './output/isme/' + str(random.randint(1, 999999)) + '.jpg', outimg) else: write_image( './output/notme/' + str(random.randint(1, 999999)) + '.jpg', outimg) if result == 0: # Is me
# Recognize faces facerect = cascade.detectMultiScale(frame_gray, 1.3, 5) recStatus = 0 if len(facerect) > 0: print(timestamp(), 'Cara detectada.') color = (255, 255, 255) # 白 for rect in facerect: [x, y, width, height] = extendFaceRect(rect) # Crop the face img_predict = frame[y:y + height, x:x + width] # Predict face result = model.predict(img_predict) if result == 0: # Is me print(timestamp(), "!Eres tu Raul! :)") isme += 1 recStatus = 1 else: print(timestamp(), 'No eres Raul >:(') notme += 1 if recStatus == 0: recStatus = -1 print(timestamp(), 'yo', isme, 'otro', notme) # End if Face Detected if recStatus == -1 or (recStatus == 0 and