示例#1
0
def predict(main_config, model_config, model, experiment_name):
    model = MODELS[model]
    model_dir = str(main_config['DATA']['model_dir'])

    vectorizer = DatasetVectorizer(model_dir)

    max_doc_len = vectorizer.max_sentence_len
    vocabulary_size = vectorizer.vocabulary_size

    model = model(max_doc_len, vocabulary_size, main_config, model_config)

    with tf.Session() as session:
        saver = tf.train.Saver()
        last_checkpoint = tf.train.latest_checkpoint('{}/{}'.format(
            model_dir, experiment_name))
        saver.restore(session, last_checkpoint)
        while True:
            x1 = input('First sentence:')
            x2 = input('Second sentence:')
            x1_sen = vectorizer.vectorize(x1)
            x2_sen = vectorizer.vectorize(x2)

            feed_dict = {
                model.x1: x1_sen,
                model.x2: x2_sen,
                model.is_training: False
            }
            prediction = session.run([model.temp_sim], feed_dict=feed_dict)
            print(prediction)
示例#2
0
def predict(main_config, model_config, model):

    model_name = '{}_{}'.format(model, main_config['PARAMS']['embedding_size'])
    model = MODELS[model_name]
    model_dir = str(main_config['DATA']['model_dir'])

    vectorizer = DatasetVectorizer(model_dir)

    max_doc_len = vectorizer.max_sentence_len
    vocabulary_size = vectorizer.vocabulary_size

    model = model(max_doc_len, vocabulary_size, main_config, model_config)

    with tf.Session() as session:
        saver = tf.train.Saver()
        last_checkpoint = tf.train.latest_checkpoint('{}/{}/model'.format(
            model_dir, model_name))
        saver.restore(session, last_checkpoint)
        while True:
            x = input('Text:')
            x_sen = vectorizer.vectorize(x)

            feed_dict = {model.x: x_sen}
            prediction = session.run([model.temp_sim], feed_dict=feed_dict)
            print(prediction)
示例#3
0
def train(
    main_config,
    model_config,
    model_name,
    experiment_name,
    dataset_name,
):
    main_cfg = MainConfig(main_config)
    model = MODELS[model_name]
    dataset = dataset_type.get_dataset(dataset_name)

    train_data = dataset.train_set_pairs()
    vectorizer = DatasetVectorizer(main_cfg.model_dir,
                                   raw_sentence_pairs=train_data)

    dataset_helper = Dataset(vectorizer, dataset, main_cfg.batch_size)
    max_sentence_len = vectorizer.max_sentence_len
    vocabulary_size = vectorizer.vocabulary_size

    train_mini_sen1, train_mini_sen2, train_mini_labels = dataset_helper.pick_train_mini_batch(
    )
    train_mini_labels = train_mini_labels.reshape(-1, 1)

    test_sentence1, test_sentence2 = dataset_helper.test_instances()
    test_labels = dataset_helper.test_labels()
    test_labels = test_labels.reshape(-1, 1)

    num_batches = dataset_helper.num_batches
    model = model(
        max_sentence_len,
        vocabulary_size,
        main_config,
        model_config,
    )
    model_saver = ModelSaver(
        main_cfg.model_dir,
        experiment_name,
        main_cfg.checkpoints_to_keep,
    )
    config = tf.ConfigProto(
        allow_soft_placement=True,
        log_device_placement=main_cfg.log_device_placement,
    )

    with tf.Session(config=config) as session:
        global_step = 0
        init = tf.global_variables_initializer()
        session.run(init)
        log_saver = LogSaver(
            main_cfg.logs_path,
            experiment_name,
            dataset_name,
            session.graph,
        )
        model_evaluator = ModelEvaluator(model, session)

        metrics = {'acc': 0.0}
        time_per_epoch = []

        log('Training model for {} epochs'.format(main_cfg.num_epochs))
        for epoch in tqdm(range(main_cfg.num_epochs), desc='Epochs'):
            start_time = time.time()

            train_sentence1, train_sentence2 = dataset_helper.train_instances(
                shuffle=True)
            train_labels = dataset_helper.train_labels()

            train_batch_helper = BatchHelper(
                train_sentence1,
                train_sentence2,
                train_labels,
                main_cfg.batch_size,
            )

            # small eval set for measuring dev accuracy
            dev_sentence1, dev_sentence2, dev_labels = dataset_helper.dev_instances(
            )
            dev_labels = dev_labels.reshape(-1, 1)

            tqdm_iter = tqdm(range(num_batches),
                             total=num_batches,
                             desc="Batches",
                             leave=False,
                             postfix=metrics)
            for batch in tqdm_iter:
                global_step += 1
                sentence1_batch, sentence2_batch, labels_batch = train_batch_helper.next(
                    batch)
                feed_dict_train = {
                    model.x1: sentence1_batch,
                    model.x2: sentence2_batch,
                    model.is_training: True,
                    model.labels: labels_batch,
                }
                loss, _ = session.run([model.loss, model.opt],
                                      feed_dict=feed_dict_train)

                if batch % main_cfg.eval_every == 0:
                    feed_dict_train = {
                        model.x1: train_mini_sen1,
                        model.x2: train_mini_sen2,
                        model.is_training: False,
                        model.labels: train_mini_labels,
                    }

                    train_accuracy, train_summary = session.run(
                        [model.accuracy, model.summary_op],
                        feed_dict=feed_dict_train,
                    )
                    log_saver.log_train(train_summary, global_step)

                    feed_dict_dev = {
                        model.x1: dev_sentence1,
                        model.x2: dev_sentence2,
                        model.is_training: False,
                        model.labels: dev_labels
                    }

                    dev_accuracy, dev_summary = session.run(
                        [model.accuracy, model.summary_op],
                        feed_dict=feed_dict_dev,
                    )
                    log_saver.log_dev(dev_summary, global_step)
                    tqdm_iter.set_postfix(
                        dev_acc='{:.2f}'.format(float(dev_accuracy)),
                        train_acc='{:.2f}'.format(float(train_accuracy)),
                        loss='{:.2f}'.format(float(loss)),
                        epoch=epoch)

                if global_step % main_cfg.save_every == 0:
                    model_saver.save(session, global_step=global_step)

            model_evaluator.evaluate_dev(dev_sentence1, dev_sentence2,
                                         dev_labels)

            end_time = time.time()
            total_time = timer(start_time, end_time)
            time_per_epoch.append(total_time)

            model_saver.save(session, global_step=global_step)

        model_evaluator.evaluate_test(test_sentence1, test_sentence2,
                                      test_labels)
        model_evaluator.save_evaluation(
            '{}/{}'.format(main_cfg.model_dir, experiment_name),
            time_per_epoch[-1], dataset)
    def __init__(self, master):
        self.frame = master
        self.frame.title('Multihead Siamese Nets')

        sample1 = StringVar(master, value=SAMPLE_SENTENCE1)
        sample2 = StringVar(master, value=SAMPLE_SENTENCE2)
        self.first_sentence_entry = Entry(
            self.frame,
            width=50,
            font="Helvetica {}".format(GUI_FONT_SIZE),
            textvariable=sample1)
        self.second_sentence_entry = Entry(
            self.frame,
            width=50,
            font="Helvetica {}".format(GUI_FONT_SIZE),
            textvariable=sample2)
        self.predictButton = Button(self.frame,
                                    text='Predict',
                                    font="Helvetica {}".format(GUI_FONT_SIZE),
                                    command=self.predict)
        self.clearButton = Button(self.frame,
                                  text='Clear',
                                  command=self.clear,
                                  font="Helvetica {}".format(GUI_FONT_SIZE))
        self.resultLabel = Label(self.frame,
                                 text='Result',
                                 font="Helvetica {}".format(GUI_FONT_SIZE))
        self.first_sentence_label = Label(
            self.frame,
            text='Sentence 1',
            font="Helvetica {}".format(GUI_FONT_SIZE))
        self.second_sentence_label = Label(
            self.frame,
            text='Sentence 2',
            font="Helvetica {}".format(GUI_FONT_SIZE))

        self.main_config = init_config()
        self.model_dir = str(self.main_config['DATA']['model_dir'])

        model_dirs = [os.path.basename(x[0]) for x in os.walk(self.model_dir)]

        self.visualize_attentions = IntVar()
        self.visualize_attentions_checkbox = Checkbutton(
            master,
            text="Visualize attention weights",
            font="Helvetica {}".format(int(GUI_FONT_SIZE / 2)),
            variable=self.visualize_attentions,
            onvalue=1,
            offvalue=0)

        variable = StringVar(master)
        variable.set('Choose a model...')
        self.model_type = OptionMenu(master,
                                     variable,
                                     *model_dirs,
                                     command=self.load_model)
        self.model_type.configure(font=('Helvetica', GUI_FONT_SIZE))

        self.first_sentence_entry.grid(row=0, column=1, columnspan=4)
        self.first_sentence_label.grid(row=0, column=0, sticky=E)
        self.second_sentence_entry.grid(row=1, column=1, columnspan=4)
        self.second_sentence_label.grid(row=1, column=0, sticky=E)
        self.model_type.grid(row=2, column=1, sticky=W + E, ipady=1)
        self.predictButton.grid(row=2, column=2, sticky=W + E, ipady=1)
        self.clearButton.grid(row=2, column=3, sticky=W + E, ipady=1)
        self.resultLabel.grid(row=2, column=4, sticky=W + E, ipady=1)

        self.vectorizer = DatasetVectorizer(self.model_dir)

        self.max_doc_len = self.vectorizer.max_sentence_len
        self.vocabulary_size = self.vectorizer.vocabulary_size

        self.session = tf.Session()
        self.model = None
class MultiheadSiameseNetGuiDemo:
    def __init__(self, master):
        self.frame = master
        self.frame.title('Multihead Siamese Nets')

        sample1 = StringVar(master, value=SAMPLE_SENTENCE1)
        sample2 = StringVar(master, value=SAMPLE_SENTENCE2)
        self.first_sentence_entry = Entry(
            self.frame,
            width=50,
            font="Helvetica {}".format(GUI_FONT_SIZE),
            textvariable=sample1)
        self.second_sentence_entry = Entry(
            self.frame,
            width=50,
            font="Helvetica {}".format(GUI_FONT_SIZE),
            textvariable=sample2)
        self.predictButton = Button(self.frame,
                                    text='Predict',
                                    font="Helvetica {}".format(GUI_FONT_SIZE),
                                    command=self.predict)
        self.clearButton = Button(self.frame,
                                  text='Clear',
                                  command=self.clear,
                                  font="Helvetica {}".format(GUI_FONT_SIZE))
        self.resultLabel = Label(self.frame,
                                 text='Result',
                                 font="Helvetica {}".format(GUI_FONT_SIZE))
        self.first_sentence_label = Label(
            self.frame,
            text='Sentence 1',
            font="Helvetica {}".format(GUI_FONT_SIZE))
        self.second_sentence_label = Label(
            self.frame,
            text='Sentence 2',
            font="Helvetica {}".format(GUI_FONT_SIZE))

        self.main_config = init_config()
        self.model_dir = str(self.main_config['DATA']['model_dir'])

        model_dirs = [os.path.basename(x[0]) for x in os.walk(self.model_dir)]

        self.visualize_attentions = IntVar()
        self.visualize_attentions_checkbox = Checkbutton(
            master,
            text="Visualize attention weights",
            font="Helvetica {}".format(int(GUI_FONT_SIZE / 2)),
            variable=self.visualize_attentions,
            onvalue=1,
            offvalue=0)

        variable = StringVar(master)
        variable.set('Choose a model...')
        self.model_type = OptionMenu(master,
                                     variable,
                                     *model_dirs,
                                     command=self.load_model)
        self.model_type.configure(font=('Helvetica', GUI_FONT_SIZE))

        self.first_sentence_entry.grid(row=0, column=1, columnspan=4)
        self.first_sentence_label.grid(row=0, column=0, sticky=E)
        self.second_sentence_entry.grid(row=1, column=1, columnspan=4)
        self.second_sentence_label.grid(row=1, column=0, sticky=E)
        self.model_type.grid(row=2, column=1, sticky=W + E, ipady=1)
        self.predictButton.grid(row=2, column=2, sticky=W + E, ipady=1)
        self.clearButton.grid(row=2, column=3, sticky=W + E, ipady=1)
        self.resultLabel.grid(row=2, column=4, sticky=W + E, ipady=1)

        self.vectorizer = DatasetVectorizer(self.model_dir)

        self.max_doc_len = self.vectorizer.max_sentence_len
        self.vocabulary_size = self.vectorizer.vocabulary_size

        self.session = tf.Session()
        self.model = None

    def predict(self):
        if self.model:
            sentence1 = self.first_sentence_entry.get()
            sentence2 = self.second_sentence_entry.get()
            x1_sen = self.vectorizer.vectorize(sentence1)
            x2_sen = self.vectorizer.vectorize(sentence2)
            feed_dict = {
                self.model.x1: x1_sen,
                self.model.x2: x2_sen,
                self.model.is_training: False
            }

            if self.visualize_attentions.get():
                prediction, at1, at2 = np.squeeze(
                    self.session.run([
                        self.model.predictions,
                        self.model.debug_vars['attentions_x1'],
                        self.model.debug_vars['attentions_x2']
                    ],
                                     feed_dict=feed_dict))
                visualization.visualize_attention_weights(at1, sentence1)
                visualization.visualize_attention_weights(at2, sentence2)
            else:
                prediction = np.squeeze(
                    self.session.run(self.model.predictions,
                                     feed_dict=feed_dict))

            prediction = np.round(prediction, 2)
            self.resultLabel['text'] = prediction
            if prediction < 0.5:
                self.resultLabel.configure(foreground="red")
            else:
                self.resultLabel.configure(foreground="green")
        else:
            messagebox.showerror("Error",
                                 "Choose a model to make a prediction.")

    def clear(self):
        self.first_sentence_entry.delete(0, 'end')
        self.second_sentence_entry.delete(0, 'end')
        self.resultLabel['text'] = ''

    def load_model(self, model_name):
        if 'multihead' in model_name:
            self.visualize_attentions_checkbox.grid(row=2,
                                                    column=0,
                                                    sticky=W + E,
                                                    ipady=1)
        else:
            self.visualize_attentions_checkbox.grid_forget()
        tf.reset_default_graph()
        self.session = tf.Session()
        logger.info('Loading model: %s', model_name)

        model = MODELS[model_name.split('_')[0]]
        model_config = init_config(model_name.split('_')[0])

        self.model = model(self.max_doc_len, self.vocabulary_size,
                           self.main_config, model_config)
        saver = tf.train.Saver()
        last_checkpoint = tf.train.latest_checkpoint('{}/{}'.format(
            self.model_dir, model_name))
        saver.restore(self.session, last_checkpoint)
        logger.info('Loaded model from: %s', last_checkpoint)
示例#6
0
def train(main_config, model_config, model_name, dataset_name):
    main_cfg = MainConfig(main_config)
    model = MODELS[model_name]
    dataset = DATASETS[dataset_name]()

    model_name = '{}_{}'.format(model_name,
                                main_config['PARAMS']['embedding_size'])

    train_data = dataset.train_set_pairs()
    vectorizer = DatasetVectorizer(train_data, main_cfg.model_dir)

    dataset_helper = Dataset(vectorizer, dataset, main_cfg.batch_size)
    max_sentence_len = vectorizer.max_sentence_len
    vocabulary_size = vectorizer.vocabulary_size

    train_mini_sen1, train_mini_sen2, train_mini_labels = dataset_helper.pick_train_mini_batch(
    )
    train_mini_labels = train_mini_labels.reshape(-1, 1)

    test_sentence1, test_sentence2 = dataset_helper.test_instances()
    test_labels = dataset_helper.test_labels()
    test_labels = test_labels.reshape(-1, 1)

    num_batches = dataset_helper.num_batches
    model = model(max_sentence_len, vocabulary_size, main_config, model_config)
    model_saver = ModelSaver(main_cfg.model_dir, model_name,
                             main_cfg.checkpoints_to_keep)
    config = tf.ConfigProto(allow_soft_placement=True,
                            log_device_placement=main_cfg.log_device_placement)

    with tf.Session(config=config) as session:
        global_step = 0
        init = tf.global_variables_initializer()
        session.run(init)
        log_saver = LogSaver(main_cfg.logs_path, model_name, dataset_name,
                             session.graph)
        model_evaluator = ModelEvaluator(model, session)

        metrics = {'acc': 0.0}
        time_per_epoch = []
        for epoch in tqdm(range(main_cfg.num_epochs), desc='Epochs'):
            start_time = time.time()

            train_sentence1, train_sentence2 = dataset_helper.train_instances(
                shuffle=True)
            train_labels = dataset_helper.train_labels()

            train_batch_helper = BatchHelper(train_sentence1, train_sentence2,
                                             train_labels, main_cfg.batch_size)

            # small eval set for measuring dev accuracy
            dev_sentence1, dev_sentence2, dev_labels = dataset_helper.dev_instances(
            )
            dev_labels = dev_labels.reshape(-1, 1)
            tqdm_iter = tqdm(range(num_batches),
                             total=num_batches,
                             desc="Batches",
                             leave=False,
                             postfix=metrics)
            for batch in tqdm_iter:
                global_step += 1
                sentence1_batch, sentence2_batch, labels_batch = train_batch_helper.next(
                    batch)
                feed_dict_train = {
                    model.x1: sentence1_batch,
                    model.x2: sentence2_batch,
                    model.is_training: True,
                    model.labels: labels_batch
                }

                loss, _ = session.run([model.loss, model.opt],
                                      feed_dict=feed_dict_train)

                if batch % main_cfg.eval_every == 0:
                    feed_dict_train = {
                        model.x1: train_mini_sen1,
                        model.x2: train_mini_sen2,
                        model.is_training: False,
                        model.labels: train_mini_labels
                    }

                    train_accuracy, train_summary = session.run(
                        [model.accuracy, model.summary_op],
                        feed_dict=feed_dict_train)
                    log_saver.log_train(train_summary, global_step)

                    feed_dict_dev = {
                        model.x1: dev_sentence1,
                        model.x2: dev_sentence2,
                        model.is_training: False,
                        model.labels: dev_labels
                    }

                    dev_accuracy, dev_summary = session.run(
                        [model.accuracy, model.summary_op],
                        feed_dict=feed_dict_dev)
                    log_saver.log_dev(dev_summary, global_step)
                    tqdm_iter.set_postfix(
                        dev_acc='{:.2f}'.format(float(dev_accuracy)),
                        train_acc='{:.2f}'.format(float(train_accuracy)),
                        loss='{:.2f}'.format(float(loss)),
                        epoch=epoch)

                if global_step % main_cfg.save_every == 0:
                    model_saver.save(session, global_step=global_step)

            model_evaluator.evaluate_dev(dev_sentence1, dev_sentence2,
                                         dev_labels)

            end_time = time.time()
            total_time = timer(start_time, end_time)
            time_per_epoch.append(total_time)

            model_saver.save(session, global_step=global_step)

        feed_dict_train = {
            model.x1: test_sentence1,
            model.x2: test_sentence2,
            model.is_training: False,
            model.labels: test_labels
        }

        #train_accuracy, train_summary, train_e = session.run([model.accuracy, model.summary_op, model.e],
        #                                            feed_dict=feed_dict_train)

        train_e = session.run([model.e], feed_dict=feed_dict_train)
        plt.clf()
        f = plt.figure(figsize=(8, 8.5))
        ax = f.add_subplot(1, 1, 1)

        i = ax.imshow(train_e[0][0], interpolation='nearest', cmap='gray')

        cbaxes = f.add_axes([0.2, 0, 0.6, 0.03])
        cbar = f.colorbar(i, cax=cbaxes, orientation='horizontal')
        cbar.ax.set_xlabel('Probability', labelpad=2)

        f.savefig('attention_maps.pdf', bbox_inches='tight')
        f.show()
        plt.show()

        feed_dict_test = {
            model.x1: test_sentence1,
            model.x2: test_sentence2,
            model.is_training: False,
            model.labels: test_labels
        }

        test_accuracy, test_summary = session.run(
            [model.accuracy, model.summary_op], feed_dict=feed_dict_test)
        print('tst_acc:%.2f loss:%.2f', test_accuracy, loss)

        model_evaluator.evaluate_test(test_sentence1, test_sentence2,
                                      test_labels)
        model_evaluator.save_evaluation(
            '{}/{}'.format(main_cfg.model_dir, model_name), time_per_epoch[-1],
            dataset)