示例#1
0
def predict(main_config, model_config, model, experiment_name):
    model = MODELS[model]
    model_dir = str(main_config['DATA']['model_dir'])

    vectorizer = DatasetVectorizer(model_dir)

    max_doc_len = vectorizer.max_sentence_len
    vocabulary_size = vectorizer.vocabulary_size

    model = model(max_doc_len, vocabulary_size, main_config, model_config)

    with tf.Session() as session:
        saver = tf.train.Saver()
        last_checkpoint = tf.train.latest_checkpoint('{}/{}'.format(
            model_dir, experiment_name))
        saver.restore(session, last_checkpoint)
        while True:
            x1 = input('First sentence:')
            x2 = input('Second sentence:')
            x1_sen = vectorizer.vectorize(x1)
            x2_sen = vectorizer.vectorize(x2)

            feed_dict = {
                model.x1: x1_sen,
                model.x2: x2_sen,
                model.is_training: False
            }
            prediction = session.run([model.temp_sim], feed_dict=feed_dict)
            print(prediction)
示例#2
0
def predict(main_config, model_config, model):

    model_name = '{}_{}'.format(model, main_config['PARAMS']['embedding_size'])
    model = MODELS[model_name]
    model_dir = str(main_config['DATA']['model_dir'])

    vectorizer = DatasetVectorizer(model_dir)

    max_doc_len = vectorizer.max_sentence_len
    vocabulary_size = vectorizer.vocabulary_size

    model = model(max_doc_len, vocabulary_size, main_config, model_config)

    with tf.Session() as session:
        saver = tf.train.Saver()
        last_checkpoint = tf.train.latest_checkpoint('{}/{}/model'.format(
            model_dir, model_name))
        saver.restore(session, last_checkpoint)
        while True:
            x = input('Text:')
            x_sen = vectorizer.vectorize(x)

            feed_dict = {model.x: x_sen}
            prediction = session.run([model.temp_sim], feed_dict=feed_dict)
            print(prediction)
class MultiheadSiameseNetGuiDemo:
    def __init__(self, master):
        self.frame = master
        self.frame.title('Multihead Siamese Nets')

        sample1 = StringVar(master, value=SAMPLE_SENTENCE1)
        sample2 = StringVar(master, value=SAMPLE_SENTENCE2)
        self.first_sentence_entry = Entry(
            self.frame,
            width=50,
            font="Helvetica {}".format(GUI_FONT_SIZE),
            textvariable=sample1)
        self.second_sentence_entry = Entry(
            self.frame,
            width=50,
            font="Helvetica {}".format(GUI_FONT_SIZE),
            textvariable=sample2)
        self.predictButton = Button(self.frame,
                                    text='Predict',
                                    font="Helvetica {}".format(GUI_FONT_SIZE),
                                    command=self.predict)
        self.clearButton = Button(self.frame,
                                  text='Clear',
                                  command=self.clear,
                                  font="Helvetica {}".format(GUI_FONT_SIZE))
        self.resultLabel = Label(self.frame,
                                 text='Result',
                                 font="Helvetica {}".format(GUI_FONT_SIZE))
        self.first_sentence_label = Label(
            self.frame,
            text='Sentence 1',
            font="Helvetica {}".format(GUI_FONT_SIZE))
        self.second_sentence_label = Label(
            self.frame,
            text='Sentence 2',
            font="Helvetica {}".format(GUI_FONT_SIZE))

        self.main_config = init_config()
        self.model_dir = str(self.main_config['DATA']['model_dir'])

        model_dirs = [os.path.basename(x[0]) for x in os.walk(self.model_dir)]

        self.visualize_attentions = IntVar()
        self.visualize_attentions_checkbox = Checkbutton(
            master,
            text="Visualize attention weights",
            font="Helvetica {}".format(int(GUI_FONT_SIZE / 2)),
            variable=self.visualize_attentions,
            onvalue=1,
            offvalue=0)

        variable = StringVar(master)
        variable.set('Choose a model...')
        self.model_type = OptionMenu(master,
                                     variable,
                                     *model_dirs,
                                     command=self.load_model)
        self.model_type.configure(font=('Helvetica', GUI_FONT_SIZE))

        self.first_sentence_entry.grid(row=0, column=1, columnspan=4)
        self.first_sentence_label.grid(row=0, column=0, sticky=E)
        self.second_sentence_entry.grid(row=1, column=1, columnspan=4)
        self.second_sentence_label.grid(row=1, column=0, sticky=E)
        self.model_type.grid(row=2, column=1, sticky=W + E, ipady=1)
        self.predictButton.grid(row=2, column=2, sticky=W + E, ipady=1)
        self.clearButton.grid(row=2, column=3, sticky=W + E, ipady=1)
        self.resultLabel.grid(row=2, column=4, sticky=W + E, ipady=1)

        self.vectorizer = DatasetVectorizer(self.model_dir)

        self.max_doc_len = self.vectorizer.max_sentence_len
        self.vocabulary_size = self.vectorizer.vocabulary_size

        self.session = tf.Session()
        self.model = None

    def predict(self):
        if self.model:
            sentence1 = self.first_sentence_entry.get()
            sentence2 = self.second_sentence_entry.get()
            x1_sen = self.vectorizer.vectorize(sentence1)
            x2_sen = self.vectorizer.vectorize(sentence2)
            feed_dict = {
                self.model.x1: x1_sen,
                self.model.x2: x2_sen,
                self.model.is_training: False
            }

            if self.visualize_attentions.get():
                prediction, at1, at2 = np.squeeze(
                    self.session.run([
                        self.model.predictions,
                        self.model.debug_vars['attentions_x1'],
                        self.model.debug_vars['attentions_x2']
                    ],
                                     feed_dict=feed_dict))
                visualization.visualize_attention_weights(at1, sentence1)
                visualization.visualize_attention_weights(at2, sentence2)
            else:
                prediction = np.squeeze(
                    self.session.run(self.model.predictions,
                                     feed_dict=feed_dict))

            prediction = np.round(prediction, 2)
            self.resultLabel['text'] = prediction
            if prediction < 0.5:
                self.resultLabel.configure(foreground="red")
            else:
                self.resultLabel.configure(foreground="green")
        else:
            messagebox.showerror("Error",
                                 "Choose a model to make a prediction.")

    def clear(self):
        self.first_sentence_entry.delete(0, 'end')
        self.second_sentence_entry.delete(0, 'end')
        self.resultLabel['text'] = ''

    def load_model(self, model_name):
        if 'multihead' in model_name:
            self.visualize_attentions_checkbox.grid(row=2,
                                                    column=0,
                                                    sticky=W + E,
                                                    ipady=1)
        else:
            self.visualize_attentions_checkbox.grid_forget()
        tf.reset_default_graph()
        self.session = tf.Session()
        logger.info('Loading model: %s', model_name)

        model = MODELS[model_name.split('_')[0]]
        model_config = init_config(model_name.split('_')[0])

        self.model = model(self.max_doc_len, self.vocabulary_size,
                           self.main_config, model_config)
        saver = tf.train.Saver()
        last_checkpoint = tf.train.latest_checkpoint('{}/{}'.format(
            self.model_dir, model_name))
        saver.restore(self.session, last_checkpoint)
        logger.info('Loaded model from: %s', last_checkpoint)