示例#1
0
def experimental_inverse_kinematics(robot,
                                    link,
                                    pose,
                                    null_space=False,
                                    max_iterations=200,
                                    tolerance=1e-3):
    (point, quat) = pose
    # https://github.com/bulletphysics/bullet3/blob/389d7aaa798e5564028ce75091a3eac6a5f76ea8/examples/SharedMemory/PhysicsClientC_API.cpp
    # https://github.com/bulletphysics/bullet3/blob/c1ba04a5809f7831fa2dee684d6747951a5da602/examples/pybullet/examples/inverse_kinematics_husky_kuka.py
    joints = get_joints(
        robot)  # Need to have all joints (although only movable returned)
    movable_joints = get_movable_joints(robot)
    current_conf = get_joint_positions(robot, joints)

    # TODO: sample other values for the arm joints as the reference conf
    min_limits = [get_joint_limits(robot, joint)[0] for joint in joints]
    max_limits = [get_joint_limits(robot, joint)[1] for joint in joints]
    #min_limits = current_conf
    #max_limits = current_conf
    #max_velocities = [get_max_velocity(robot, joint) for joint in joints] # Range of Jacobian
    max_velocities = [10000] * len(joints)
    # TODO: cannot have zero velocities
    # TODO: larger definitely better for velocities
    #damping = tuple(0.1*np.ones(len(joints)))

    #t0 = time.time()
    #kinematic_conf = get_joint_positions(robot, movable_joints)
    for iterations in range(max_iterations):  # 0.000863273143768 / iteration
        # TODO: return none if no progress
        if null_space:
            kinematic_conf = p.calculateInverseKinematics(
                robot,
                link,
                point,
                quat,
                lowerLimits=min_limits,
                upperLimits=max_limits,
                jointRanges=max_velocities,
                restPoses=current_conf,
                #jointDamping=damping,
            )
        else:
            kinematic_conf = p.calculateInverseKinematics(
                robot, link, point, quat)
        if (kinematic_conf is None) or any(map(math.isnan, kinematic_conf)):
            return None
        set_joint_positions(robot, movable_joints, kinematic_conf)
        link_point, link_quat = get_link_pose(robot, link)
        if np.allclose(link_point, point, atol=tolerance) and np.allclose(
                link_quat, quat, atol=tolerance):
            #print(iterations)
            break
    else:
        return None
    if violates_limits(robot, movable_joints, kinematic_conf):
        return None
    #total_time = (time.time() - t0)
    #print(total_time)
    #print((time.time() - t0)/max_iterations)
    return kinematic_conf
示例#2
0
    def fn(robot_name, conf1, conf2, fluents=[]):
        robot = task.mbp.GetModelInstanceByName(robot_name)
        joints = get_movable_joints(task.mbp, robot)

        moving = bodies_from_models(task.mbp, [robot, gripper])
        obstacles = set(task.fixed_bodies())
        attachments = parse_fluents(fluents, context, obstacles)
        for grasp in attachments:
            moving.update(grasp.bodies)
        obstacles -= moving

        collision_pairs = set(product(moving,
                                      obstacles)) if collisions else set()
        collision_fn = get_collision_fn(task.diagram,
                                        task.diagram_context,
                                        task.mbp,
                                        task.scene_graph,
                                        joints,
                                        collision_pairs=collision_pairs,
                                        attachments=attachments)

        open_wsg50_gripper(task.mbp, context, gripper)
        path = plan_joint_motion(joints,
                                 conf1.positions,
                                 conf2.positions,
                                 collision_fn=collision_fn,
                                 restarts=10,
                                 iterations=75,
                                 smooth=50)
        if path is None:
            return None
        traj = Trajectory([Conf(joints, q) for q in path],
                          attachments=attachments)
        return (traj, )
示例#3
0
def get_open_trajectory(plant, gripper):
    gripper_joints = get_movable_joints(plant, gripper)
    gripper_extend_fn = get_extend_fn(gripper_joints)
    gripper_closed_conf = get_close_wsg50_positions(plant, gripper)
    gripper_path = list(
        gripper_extend_fn(gripper_closed_conf,
                          get_open_wsg50_positions(plant, gripper)))
    gripper_path.insert(0, gripper_closed_conf)
    return Trajectory(Conf(gripper_joints, q) for q in gripper_path)
示例#4
0
    def fn(robot_name, obj_name, obj_pose, obj_grasp):
        # TODO: if gripper/block in collision, return
        robot = task.mbp.GetModelInstanceByName(robot_name)
        joints = get_movable_joints(task.mbp, robot)
        collision_pairs = set(
            product(bodies_from_models(task.mbp, [robot, task.gripper]),
                    fixed))
        collision_fn = get_collision_fn(
            task.diagram,
            task.diagram_context,
            task.mbp,
            task.scene_graph,
            joints,
            collision_pairs=collision_pairs)  # TODO: while holding

        gripper_pose = obj_pose.transform.multiply(
            obj_grasp.transform.inverse())
        gripper_path = list(
            interpolate_translation(gripper_pose,
                                    approach_vector,
                                    step_size=step_size))

        attempts = 0
        last_success = 0
        while (attempts - last_success) < max_failures:
            attempts += 1
            obj_pose.assign(context)
            path = plan_frame_motion(task.plant,
                                     joints,
                                     gripper_frame,
                                     gripper_path,
                                     initial_guess=initial_guess,
                                     collision_fn=collision_fn)
            if path is None:
                continue
            traj = Trajectory([Conf(joints, q) for q in path],
                              attachments=[obj_grasp])
            conf = traj.path[-1]
            yield (conf, traj)
            last_success = attempts
示例#5
0
def load_station(time_step=0.0, plan=None):
    # TODO: map names to SDF paths
    # https://github.com/RobotLocomotion/drake/blob/master/bindings/pydrake/examples/manipulation_station_py.cc
    #object_file_path = FindResourceOrThrow(
    #    "drake/external/models_robotlocomotion/ycb_objects/061_foam_brick.sdf")
    object_file_path = FindResourceOrThrow(
        "drake/examples/manipulation_station/models/061_foam_brick.sdf")

    # RuntimeError: Error control wants to select step smaller than minimum allowed (1e-14)
    station = ManipulationStation(time_step, IiwaCollisionModel.kBoxCollision)
    plant = station.get_mutable_multibody_plant()
    scene_graph = station.get_mutable_scene_graph()

    robot = plant.GetModelInstanceByName('iiwa')
    gripper = plant.GetModelInstanceByName('gripper')
    station.AddCupboard()
    brick = AddModelFromSdfFile(file_name=object_file_path,
                                model_name="brick",
                                plant=plant,
                                scene_graph=scene_graph)
    station.Finalize()

    door_names = ['left_door', 'right_door']
    doors = [plant.GetBodyByName(name).index() for name in door_names]

    initial_conf = [0, 0.6 - np.pi / 6, 0, -1.75, 0, 1.0, 0]
    #initial_conf[1] += np.pi / 6
    initial_positions = {
        plant.GetJointByName('left_door_hinge'):
        -DOOR_CLOSED,
        #plant.GetJointByName('left_door_hinge'): -np.pi / 2,
        plant.GetJointByName('right_door_hinge'):
        np.pi / 2,
        #plant.GetJointByName('right_door_hinge'): np.pi,
    }
    initial_positions.update(
        zip(get_movable_joints(plant, robot), initial_conf))

    initial_poses = {
        brick:
        create_transform(translation=[0.3, 0, 0], rotation=[0, 0, np.pi / 2]),
    }
    goal_poses = {
        brick:
        create_transform(translation=[0.8, 0.2, 0.2927],
                         rotation=[0, 0, 5 * np.pi / 4]),
    }

    diagram, state_machine = build_manipulation_station(station, plan)

    task = Task(diagram,
                plant,
                scene_graph,
                robot,
                gripper,
                movable=[brick],
                doors=doors,
                initial_positions=initial_positions,
                initial_poses=initial_poses,
                goal_poses=goal_poses,
                reset_robot=True,
                reset_doors=False)
    task.set_initial()

    return task, diagram, state_machine
示例#6
0
    def fn(robot_name, door_name, door_conf1, door_conf2):
        """
        :param robot_name: The name of the robot (should be iiwa)
        :param door_name: The name of the door (should be left_door or right_door)
        :param door_conf1: The initial door configuration
        :param door_conf2: The final door configuration
        :return: A triplet composed of the initial robot configuration, final robot configuration,
                 and combined robot & door position trajectory to execute the pull
        """
        robot = task.mbp.GetModelInstanceByName(robot_name)
        robot_joints = get_movable_joints(task.mbp, robot)
        collision_pairs = set(
            product(bodies_from_models(task.mbp, [robot, task.gripper]),
                    fixed))
        collision_fn = get_collision_fn(task.diagram,
                                        task.diagram_context,
                                        task.mbp,
                                        task.scene_graph,
                                        robot_joints,
                                        collision_pairs=collision_pairs)
        door_body = task.mbp.GetBodyByName(door_name)
        door_joints = door_conf1.joints
        combined_joints = robot_joints + door_joints
        # The transformation from the door frame to the gripper frame that corresponds to grasping the door handle
        gripper_from_door = get_door_grasp(door_body, box_from_geom)

        def get_robot_joints(door_body, door_joint):

            door_pose_world = task.plant.tree().EvalBodyPoseInWorld(
                context, door_body)
            door_pose_gripper = np.dot(gripper_from_door, door_pose_world)

        ##### BEGIN YOUR CODE HERE #####

        # combined_joint_path is a joint position path for the concatenated robot and door joints.
        # It should be a list of 8 DOF configurations (7 robot DOFs + 1 door DOF).
        # Additionally, combined_joint_path[0][len(robot_joints):] should equal door_conf1.positions
        # and combined_joint_path[-1][len(robot_joints):] should equal door_conf2.positions.
        num_knots = 4
        door_joints_list = [door_joints[0]]

        print door_conf1.joints[0].get_angle(context)
        print door_conf2.joints[0].get_angle(context)
        for i in range(num_knots):
            door_joints_list.append(door_joints[0].set_angle(
                context, door_joints[0].get_angle(context) +
                (door_conf2.joints[0].get_angle(context) -
                 door_conf1.joints[0].get_angle(context)) *
                (i + 1) / num_knots))
        print[dj.get_angle(context) for dj in door_joints_list]
        # if path is None:
        #     continue
        combined_joint_path = [
            get_robot_joints(door_body, dj.get_angle(context))
            for dj in door_joints_list
        ]

        ##### END YOUR CODE HERE #####

        robot_conf1 = Conf(robot_joints,
                           combined_joint_path[0][:len(robot_joints)])
        robot_conf2 = Conf(robot_joints,
                           combined_joint_path[-1][:len(robot_joints)])
        traj = Trajectory(
            Conf(combined_joints, combined_conf)
            for combined_conf in combined_joint_path)
        yield (robot_conf1, robot_conf2, traj)
示例#7
0
def get_pddlstream_problem(task, context, collisions=True):
    domain_pddl = read(get_file_path(__file__, 'domain.pddl'))
    stream_pddl = read(get_file_path(__file__, 'stream.pddl'))
    constant_map = {}

    plant = task.mbp
    robot = task.robot
    robot_name = get_model_name(plant, robot)

    world = plant.world_frame() # mbp.world_body()
    robot_joints = get_movable_joints(plant, robot)
    robot_conf = Conf(robot_joints, get_configuration(plant, context, robot))
    init = [
        ('Robot', robot_name),
        ('CanMove', robot_name),
        ('Conf', robot_name, robot_conf),
        ('AtConf', robot_name, robot_conf),
        ('HandEmpty', robot_name),
    ]
    goal_literals = []
    if task.reset_robot:
        goal_literals.append(('AtConf', robot_name, robot_conf),)

    for obj in task.movable:
        obj_name = get_model_name(plant, obj)
        obj_pose = Pose(plant, world, obj, get_world_pose(plant, context, obj))
        init += [('Graspable', obj_name),
                 ('Pose', obj_name, obj_pose),
                 ('AtPose', obj_name, obj_pose)]
        for surface in task.surfaces:
            init += [('Stackable', obj_name, surface)]

    for surface in task.surfaces:
        surface_name = get_model_name(plant, surface.model_index)
        if 'sink' in surface_name:
            init += [('Sink', surface)]
        if 'stove' in surface_name:
            init += [('Stove', surface)]

    for door in task.doors:
        door_body = plant.tree().get_body(door)
        door_name = door_body.name()
        door_joints = get_parent_joints(plant, door_body)
        door_conf = Conf(door_joints, get_joint_positions(door_joints, context))
        init += [
            ('Door', door_name),
            ('Conf', door_name, door_conf),
            ('AtConf', door_name, door_conf),
        ]
        for positions in [get_door_positions(door_body, DOOR_OPEN)]:
            conf = Conf(door_joints, positions)
            init += [('Conf', door_name, conf)]
        if task.reset_doors:
            goal_literals += [('AtConf', door_name, door_conf)]

    for obj, transform in task.goal_poses.items():
        obj_name = get_model_name(plant, obj)
        obj_pose = Pose(plant, world, obj, transform)
        init += [('Pose', obj_name, obj_pose)]
        goal_literals.append(('AtPose', obj_name, obj_pose))
    for obj in task.goal_holding:
        goal_literals.append(('Holding', robot_name, get_model_name(plant, obj)))
    for obj, surface in task.goal_on:
        goal_literals.append(('On', get_model_name(plant, obj), surface))
    for obj in task.goal_cooked:
        goal_literals.append(('Cooked', get_model_name(plant, obj)))

    goal = And(*goal_literals)
    print('Initial:', init)
    print('Goal:', goal)

    stream_map = {
        'sample-grasp': from_gen_fn(get_grasp_gen_fn(task)),
        'plan-ik': from_gen_fn(get_ik_gen_fn(task, context, collisions=collisions)),
        'plan-motion': from_fn(get_motion_fn(task, context, collisions=collisions)),
        'plan-pull': from_gen_fn(get_pull_fn(task, context, collisions=collisions)),
        'TrajPoseCollision': get_collision_test(task, context, collisions=collisions),
        'TrajConfCollision': get_collision_test(task, context, collisions=collisions),
    }
    #stream_map = 'debug' # Runs PDDLStream with "placeholder streams" for debugging

    return PDDLProblem(domain_pddl, constant_map, stream_pddl, stream_map, init, goal)
示例#8
0
def main():
    # TODO: teleporting kuka arm
    parser = argparse.ArgumentParser()  # Automatically includes help
    parser.add_argument('-viewer', action='store_true', help='enable viewer.')
    args = parser.parse_args()

    client = connect(use_gui=args.viewer)
    add_data_path()

    #planeId = p.loadURDF("plane.urdf")
    table = p.loadURDF("table/table.urdf", 0, 0, 0, 0, 0, 0.707107, 0.707107)
    box = create_box(.07, .05, .15)


    # boxId = p.loadURDF("r2d2.urdf",cubeStartPos, cubeStartOrientation)
    #pr2 = p.loadURDF("pr2_description/pr2.urdf")
    pr2 = p.loadURDF("pr2_description/pr2_fixed_torso.urdf")
    #pr2 = p.loadURDF("/Users/caelan/Programs/Installation/pr2_drake/pr2_local2.urdf",)
                     #useFixedBase=0,)
                     #flags=p.URDF_USE_SELF_COLLISION)
                     #flags=p.URDF_USE_SELF_COLLISION_EXCLUDE_PARENT)
                     #flags=p.URDF_USE_SELF_COLLISION_EXCLUDE_ALL_PARENTS)
    #pr2 = p.loadURDF("pr2_drake/urdf/pr2_simplified.urdf", useFixedBase=False)
    initially_colliding = get_colliding_links(pr2)
    print len(initially_colliding)
    origin = (0, 0, 0)
    print p.getNumConstraints()


    # TODO: no way of controlling the base position by itself
    # TODO: PR2 seems to collide with itself frequently
    # real_time = False
    # p.setRealTimeSimulation(real_time)
    # left_joints = [joint_from_name(pr2, name) for name in LEFT_JOINT_NAMES]
    # control_joints(pr2, left_joints, TOP_HOLDING_LEFT_ARM)
    # while True:
    #     control_joints(pr2, left_joints, TOP_HOLDING_LEFT_ARM)
    #     if not real_time:
    #         p.stepSimulation()

    # A CollisionMap robot allows the user to specify self-collision regions indexed by the values of two joints.

    # GetRigidlyAttachedLinks

    print pr2
    # for i in range (10000):
    #    p.stepSimulation()
    #    time.sleep(1./240.)

    #print get_joint_names(pr2)
    print [get_joint_name(pr2, joint) for joint in get_movable_joints(pr2)]
    print get_joint_position(pr2, joint_from_name(pr2, TORSO_JOINT_NAME))
    #open_gripper(pr2, joint_from_name(pr2, LEFT_GRIPPER))
    #print get_joint_limits(pr2, joint_from_name(pr2, LEFT_GRIPPER))
    #print get_joint_position(pr2, joint_from_name(pr2, LEFT_GRIPPER))
    print self_collision(pr2)

    """
    print p.getNumConstraints()
    constraint = fixed_constraint(pr2, -1, box, -1) # table
    p.changeConstraint(constraint)
    print p.getNumConstraints()
    print p.getConstraintInfo(constraint)
    print p.getConstraintState(constraint)
    p.stepSimulation()
    raw_input('Continue?')

    set_point(pr2, (-2, 0, 0))
    p.stepSimulation()
    p.changeConstraint(constraint)
    print p.getConstraintInfo(constraint)
    print p.getConstraintState(constraint)
    raw_input('Continue?')
    print get_point(pr2)
    raw_input('Continue?')
    """

    # TODO: would be good if we could set the joint directly
    print set_joint_position(pr2, joint_from_name(pr2, TORSO_JOINT_NAME), 0.2)  # Updates automatically
    print get_joint_position(pr2, joint_from_name(pr2, TORSO_JOINT_NAME))
    #return

    left_joints = [joint_from_name(pr2, name) for name in LEFT_JOINT_NAMES]
    right_joints = [joint_from_name(pr2, name) for name in RIGHT_JOINT_NAMES]
    print set_joint_positions(pr2, left_joints, TOP_HOLDING_LEFT_ARM) # TOP_HOLDING_LEFT_ARM | SIDE_HOLDING_LEFT_ARM
    print set_joint_positions(pr2, right_joints, REST_RIGHT_ARM) # TOP_HOLDING_RIGHT_ARM | REST_RIGHT_ARM

    print get_body_name(pr2)
    print get_body_names()
    # print p.getBodyUniqueId(pr2)
    print get_joint_names(pr2)


    #for joint, value in zip(LEFT_ARM_JOINTS, REST_LEFT_ARM):
    #    set_joint_position(pr2, joint, value)
    # for name, value in zip(LEFT_JOINT_NAMES, REST_LEFT_ARM):
    #     joint = joint_from_name(pr2, name)
    #     #print name, joint, get_joint_position(pr2, joint), value
    #     print name, get_joint_limits(pr2, joint), get_joint_type(pr2, joint), get_link_name(pr2, joint)
    #     set_joint_position(pr2, joint, value)
    #     #print name, joint, get_joint_position(pr2, joint), value
    # for name, value in zip(RIGHT_JOINT_NAMES, REST_RIGHT_ARM):
    #     set_joint_position(pr2, joint_from_name(pr2, name), value)

    print p.getNumJoints(pr2)
    jointId = 0
    print p.getJointInfo(pr2, jointId)
    print p.getJointState(pr2, jointId)

    # for i in xrange(10):
    #     #lower, upper = BASE_LIMITS
    #     #q = np.random.rand(len(lower))*(np.array(upper) - np.array(lower)) + lower
    #     q = np.random.uniform(*BASE_LIMITS)
    #     theta = np.random.uniform(*REVOLUTE_LIMITS)
    #     quat = z_rotation(theta)
    #     print q, theta, quat, env_collision(pr2)
    #     #set_point(pr2, q)
    #     set_pose(pr2, q, quat)
    #     #p.getMouseEvents()
    #     #p.getKeyboardEvents()
    #     raw_input('Continue?') # Stalls because waiting for input
    #
    # # TODO: self collisions
    # for i in xrange(10):
    #     for name in LEFT_JOINT_NAMES:
    #         joint = joint_from_name(pr2, name)
    #         value = np.random.uniform(*get_joint_limits(pr2, joint))
    #         set_joint_position(pr2, joint, value)
    #     raw_input('Continue?')



    #start = (-2, -2, 0)
    #set_base_values(pr2, start)
    # #start = get_base_values(pr2)
    # goal = (2, 2, 0)
    # p.addUserDebugLine(start, goal, lineColorRGB=(1, 1, 0)) # addUserDebugText
    # print start, goal
    # raw_input('Plan?')
    # path = plan_base_motion(pr2, goal)
    # print path
    # if path is None:
    #     return
    # print len(path)
    # for bq in path:
    #     set_base_values(pr2, bq)
    #     raw_input('Continue?')



    # left_joints = [joint_from_name(pr2, name) for name in LEFT_JOINT_NAMES]
    # for joint in left_joints:
    #     print joint, get_joint_name(pr2, joint), get_joint_limits(pr2, joint), \
    #         is_circular(pr2, joint), get_joint_position(pr2, joint)
    #
    # #goal = np.zeros(len(left_joints))
    # goal = []
    # for name, value in zip(LEFT_JOINT_NAMES, REST_LEFT_ARM):
    #     joint = joint_from_name(pr2, name)
    #     goal.append(wrap_joint(pr2, joint, value))
    #
    # path = plan_joint_motion(pr2, left_joints, goal)
    # print path
    # for q in path:s
    #     set_joint_positions(pr2, left_joints, q)
    #     raw_input('Continue?')

    print p.JOINT_REVOLUTE, p.JOINT_PRISMATIC, p.JOINT_FIXED, p.JOINT_POINT2POINT, p.JOINT_GEAR # 0 1 4 5 6

    movable_joints = get_movable_joints(pr2)
    print len(movable_joints)
    for joint in xrange(get_num_joints(pr2)):
        if is_movable(pr2, joint):
            print joint, get_joint_name(pr2, joint), get_joint_type(pr2, joint), get_joint_limits(pr2, joint)

    #joints = [joint_from_name(pr2, name) for name in LEFT_JOINT_NAMES]
    #set_joint_positions(pr2, joints, sample_joints(pr2, joints))
    #print get_joint_positions(pr2, joints) # Need to print before the display updates?



    # set_base_values(pr2, (1, -1, -np.pi/4))
    # movable_joints = get_movable_joints(pr2)
    # gripper_pose = get_link_pose(pr2, link_from_name(pr2, LEFT_ARM_LINK))
    # print gripper_pose
    # print get_joint_positions(pr2, movable_joints)
    # p.addUserDebugLine(origin, gripper_pose[0], lineColorRGB=(1, 0, 0))
    # p.stepSimulation()
    # raw_input('Pre2 IK')
    # set_joint_positions(pr2, left_joints, SIDE_HOLDING_LEFT_ARM) # TOP_HOLDING_LEFT_ARM | SIDE_HOLDING_LEFT_ARM
    # print get_joint_positions(pr2, movable_joints)
    # p.stepSimulation()
    # raw_input('Pre IK')
    # conf = inverse_kinematics(pr2, gripper_pose) # Doesn't automatically set configuraitons
    # print conf
    # print get_joint_positions(pr2, movable_joints)
    # set_joint_positions(pr2, movable_joints, conf)
    # print get_link_pose(pr2, link_from_name(pr2, LEFT_ARM_LINK))
    # #print get_joint_positions(pr2, movable_joints)
    # p.stepSimulation()
    # raw_input('Post IK')
    # return

    # print pose_from_tform(TOOL_TFORM)
    # gripper_pose = get_link_pose(pr2, link_from_name(pr2, LEFT_ARM_LINK))
    # #gripper_pose = multiply(gripper_pose, TOOL_POSE)
    # #gripper_pose = get_gripper_pose(pr2)
    # for i, grasp_pose in enumerate(get_top_grasps(box)):
    #     grasp_pose = multiply(TOOL_POSE, grasp_pose)
    #     box_pose = multiply(gripper_pose, grasp_pose)
    #     set_pose(box, *box_pose)
    #     print get_pose(box)
    #     raw_input('Grasp {}'.format(i))
    # return

    torso = joint_from_name(pr2, TORSO_JOINT_NAME)
    torso_point, torso_quat = get_link_pose(pr2, torso)

    #torso_constraint = p.createConstraint(pr2, torso, -1, -1,
    #                   p.JOINT_FIXED, jointAxis=[0] * 3,  # JOINT_FIXED
    #                   parentFramePosition=torso_point,
    #                   childFramePosition=torso_quat)

    create_inverse_reachability(pr2, box, table)
    ir_database = load_inverse_reachability()
    print len(ir_database)


    return


    link = link_from_name(pr2, LEFT_ARM_LINK)
    point, quat = get_link_pose(pr2, link)
    print point, quat
    p.addUserDebugLine(origin, point, lineColorRGB=(1, 1, 0))  # addUserDebugText
    raw_input('Continue?')

    current_conf = get_joint_positions(pr2, movable_joints)

    #ik_conf = p.calculateInverseKinematics(pr2, link, point)
    #ik_conf = p.calculateInverseKinematics(pr2, link, point, quat)

    min_limits = [get_joint_limits(pr2, joint)[0] for joint in movable_joints]
    max_limits = [get_joint_limits(pr2, joint)[1] for joint in movable_joints]
    max_velocities = [get_max_velocity(pr2, joint) for joint in movable_joints] # Range of Jacobian
    print min_limits
    print max_limits
    print max_velocities
    ik_conf = p.calculateInverseKinematics(pr2, link, point, quat, lowerLimits=min_limits,
                                           upperLimits=max_limits, jointRanges=max_velocities, restPoses=current_conf)


    value_from_joint = dict(zip(movable_joints, ik_conf))
    print [value_from_joint[joint] for joint in joints]

    #print len(ik_conf), ik_conf
    set_joint_positions(pr2, movable_joints, ik_conf)
    #print len(movable_joints), get_joint_positions(pr2, movable_joints)
    print get_joint_positions(pr2, joints)

    raw_input('Finish?')

    p.disconnect()
示例#9
0
def open_wsg50_gripper(mbp, context, model_index):
    set_joint_positions(get_movable_joints(mbp, model_index), context,
                        get_open_wsg50_positions(mbp, model_index))
示例#10
0
def close_wsg50_gripper(mbp, context, model_index):  # 0.05
    set_joint_positions(get_movable_joints(mbp, model_index), context,
                        get_close_wsg50_positions(mbp, model_index))