示例#1
0
    def accumulate_input_ids(edge_list):
        """
        python -m dtool.example_depcache2 testdata_depc4 --show
        """
        edge_data = ut.take_column(edge_list, 3)
        # We are accumulating local input ids
        toaccum_list_ = ut.dict_take_column(edge_data, 'local_input_id')
        if BIG_HACK and True:
            v_list = ut.take_column(edge_list, 1)
            # show the local_input_ids at the entire level
            pred_ids = ([[
                x['local_input_id']
                for x in list(graph.pred[node].values())[0].values()
            ] if len(graph.pred[node]) else [] for node in v_list])
            toaccum_list = [
                x + ':' + ';'.join(y) for x, y in zip(toaccum_list_, pred_ids)
            ]
        else:
            toaccum_list = toaccum_list_

        # Default dumb accumulation
        accum_ids_ = ut.cumsum(zip(toaccum_list), tuple())
        accum_ids = ut.lmap(condense_accum_ids, accum_ids_)
        if BIG_HACK:
            accum_ids = ut.lmap(condense_accum_ids_stars, accum_ids)
            accum_ids = [('t', ) + x for x in accum_ids]
        ut.dict_set_column(edge_data, 'accum_id', accum_ids)
        return accum_ids
示例#2
0
 def _assert_self(inva, qreq_):
     ibs = qreq_.ibs
     assert len(inva.aids) == len(inva.wx_lists)
     assert len(inva.aids) == len(inva.fxs_lists)
     assert len(inva.aids) == len(inva.maws_lists)
     assert len(inva.aids) == len(inva.agg_rvecs)
     assert len(inva.aids) == len(inva.agg_flags)
     nfeat_list1 = ibs.get_annot_num_feats(inva.aids, config2_=qreq_.qparams)
     nfeat_list2 = [sum(ut.lmap(len, fx_list)) for fx_list in inva.fxs_lists]
     nfeat_list3 = [sum(ut.lmap(len, maws)) for maws in inva.maws_lists]
     ut.assert_lists_eq(nfeat_list1, nfeat_list2)
     ut.assert_lists_eq(nfeat_list1, nfeat_list3)
示例#3
0
def sanity_checks(offset_list, Y_list, query_annots, ibs):
    nfeat_list = np.diff(offset_list)
    for Y, nfeat in ut.ProgIter(zip(Y_list, nfeat_list), 'checking'):
        assert nfeat == sum(ut.lmap(len, Y.fxs_list))

    if False:
        # Visualize queries
        # Look at the standard query images here
        # http://www.robots.ox.ac.uk:5000/~vgg/publications/2007/Philbin07/philbin07.pdf
        from wbia.viz import viz_chip
        import wbia.plottool as pt

        pt.qt4ensure()
        fnum = 1
        pnum_ = pt.make_pnum_nextgen(len(query_annots.aids) // 5, 5)
        for aid in ut.ProgIter(query_annots.aids):
            pnum = pnum_()
            viz_chip.show_chip(
                ibs,
                aid,
                in_image=True,
                annote=False,
                notitle=True,
                draw_lbls=False,
                fnum=fnum,
                pnum=pnum,
            )
示例#4
0
    def get_patches(inva, wx, ibs, verbose=True):
        """
        Loads the patches assigned to a particular word in this stack

        >>> inva.wx_to_aids = inva.compute_inverted_list()
        >>> verbose=True
        """
        config = inva.config
        aid_list = inva.wx_to_aids[wx]
        X_list = [inva.get_annot(aid) for aid in aid_list]
        fxs_groups = [X.fxs(wx) for X in X_list]
        all_kpts_list = ibs.depc.d.get_feat_kpts(aid_list, config=config)
        sub_kpts_list = vt.ziptake(all_kpts_list, fxs_groups, axis=0)
        total_patches = sum(ut.lmap(len, fxs_groups))

        chip_list = ibs.depc_annot.d.get_chips_img(aid_list, config=config)
        # convert to approprate colorspace
        #if colorspace is not None:
        #    chip_list = vt.convert_image_list_colorspace(chip_list, colorspace)
        # ut.print_object_size(chip_list, 'chip_list')

        patch_size = 64
        shape = (total_patches, patch_size, patch_size, 3)
        _prog = ut.ProgPartial(enabled=verbose, lbl='warping patches', bs=True)
        _patchiter = ut.iflatten([
            vt.get_warped_patches(chip, kpts, patch_size=patch_size)[0]
            #vt.get_warped_patches(chip, kpts, patch_size=patch_size, use_cpp=True)[0]
            for chip, kpts in _prog(zip(chip_list, sub_kpts_list),
                                    length=len(aid_list))
        ])
        word_patches = vt.fromiter_nd(_patchiter, shape, dtype=np.uint8)
        return word_patches
示例#5
0
 def phis_flags_list(X, idxs):
     """ get subset of non-aggregated residual vectors """
     phis_list = ut.take(X.rvecs_list, idxs)
     flags_list = ut.take(X.flags_list, idxs)
     if X.int_rvec:
         phis_list = ut.lmap(smk_funcs.uncast_residual_integer, phis_list)
     return phis_list, flags_list
示例#6
0
def nx_from_matrix(weight_matrix, nodes=None, remove_self=True):
    import networkx as nx
    import utool as ut
    import numpy as np
    if nodes is None:
        nodes = list(range(len(weight_matrix)))
    weight_list = weight_matrix.ravel()
    flat_idxs_ = np.arange(weight_matrix.size)
    multi_idxs_ = np.unravel_index(flat_idxs_, weight_matrix.shape)

    # Remove 0 weight edges
    flags = np.logical_not(np.isclose(weight_list, 0))
    weight_list = ut.compress(weight_list, flags)
    multi_idxs = ut.compress(list(zip(*multi_idxs_)), flags)
    edge_list = ut.lmap(tuple, ut.unflat_take(nodes, multi_idxs))

    if remove_self:
        flags = [e1 != e2 for e1, e2 in edge_list]
        edge_list = ut.compress(edge_list, flags)
        weight_list = ut.compress(weight_list, flags)

    graph = nx.Graph()
    graph.add_nodes_from(nodes)
    graph.add_edges_from(edge_list)
    label_list = ['%.2f' % w for w in weight_list]
    nx.set_edge_attributes(graph, 'weight', dict(zip(edge_list,
                                                     weight_list)))
    nx.set_edge_attributes(graph, 'label', dict(zip(edge_list,
                                                     label_list)))
    return graph
示例#7
0
 def make_adj_matrix(G):
     edges = list(G.edges())
     edge2_idx = ut.partial(ut.dict_take, node2_idx)
     uv_list = ut.lmap(edge2_idx, edges)
     A = np.zeros((len(nodes), len(nodes)))
     A[tuple(np.array(uv_list).T)] = 1
     return A
示例#8
0
def _recombine_labels(chunk_labels):
    """
    Ensure each group has different indices

    chunk_labels = grouped_labels
    """
    import utool as ut

    labels = ut.take_column(chunk_labels, 0)
    idxs = ut.take_column(chunk_labels, 1)
    # nunique_list = [len(np.unique(a)) for a in labels]
    chunksizes = ut.lmap(len, idxs)
    cumsum = np.cumsum(chunksizes).tolist()
    combined_idxs = np.hstack(idxs)
    combined_labels = np.hstack(labels)
    offset = 0
    # Ensure each chunk has unique labels
    for start, stop in zip([0] + cumsum, cumsum):
        combined_labels[start:stop] += offset
        offset += len(np.unique(combined_labels[start:stop]))
    # Ungroup
    X_labels = np.empty(combined_idxs.max() + 1, dtype=np.int)
    # new_labels[:] = -1
    X_labels[combined_idxs] = combined_labels
    return X_labels
示例#9
0
def cheetah_stats(ibs):
    filters = [
        dict(view=['right', 'frontright', 'backright'], minqual='good'),
        dict(view=['right', 'frontright', 'backright']),
    ]
    for filtkw in filters:
        annots = ibs.annots(ibs.filter_annots_general(**filtkw))
        unique_nids, grouped_annots = annots.group(annots.nids)
        annots_per_name = ut.lmap(len, grouped_annots)
        annots_per_name_freq = ut.dict_hist(annots_per_name)
        def bin_mapper(num):
            if num < 5:
                return (num, num + 1)
            else:
                for bin, mod in [(20, 5), (50, 10)]:
                    if num < bin:
                        low = (num // mod) * mod
                        high = low + mod
                        return (low, high)
                if num >= bin:
                    return (bin, None)
                else:
                    assert False, str(num)
        hist = ut.ddict(lambda: 0)
        for num in annots_per_name:
            hist[bin_mapper(num)] += 1
        hist = ut.sort_dict(hist)

        print('------------')
        print('filters = %s' % ut.repr4(filtkw))
        print('num_annots = %r' % (len(annots)))
        print('num_names = %r' % (len(unique_nids)))
        print('annots_per_name_freq = %s' % (ut.repr4(annots_per_name_freq)))
        print('annots_per_name_freq (ranges) = %s' % (ut.repr4(hist)))
        assert sum(hist.values()) == len(unique_nids)
示例#10
0
def read_csv(fpath):
    """ reads csv in unicode """
    import csv
    import utool as ut
    #csvfile = open(fpath, 'rb')
    with open(fpath, 'rb') as csvfile:
        row_iter = csv.reader(csvfile, delimiter=str(','), quotechar=str('|'))
        row_list = [ut.lmap(ut.ensure_unicode, row) for row in row_iter]
    return row_list
示例#11
0
def read_csv(fpath):
    """ reads csv in unicode """
    import csv
    import utool as ut
    #csvfile = open(fpath, 'rb')
    with open(fpath, 'rb') as csvfile:
        row_iter = csv.reader(csvfile, delimiter=str(','), quotechar=str('|'))
        row_list = [ut.lmap(ut.ensure_unicode, row) for row in row_iter]
    return row_list
示例#12
0
def nx_make_adj_matrix(G):
    import utool as ut
    nodes = list(G.nodes())
    node2_idx = ut.make_index_lookup(nodes)
    edges = list(G.edges())
    edge2_idx = ut.partial(ut.dict_take, node2_idx)
    uv_list = ut.lmap(edge2_idx, edges)
    A = np.zeros((len(nodes), len(nodes)))
    A[tuple(np.array(uv_list).T)] = 1
    return A
示例#13
0
 def __nice__(self):
     import numpy as np
     len_list = ut.lmap(len, self.annots_list)
     num = len(self.annots_list)
     mean = np.mean(len_list)
     std = np.std(len_list)
     if six.PY3:
         nice = '(n=%r, μ=%.1f, σ=%.1f)' % (num, mean, std)
     else:
         nice = '(n=%r, m=%.1f, s=%.1f)' % (num, mean, std)
     return nice
示例#14
0
def __debug_win_msvcr():
    import utool as ut
    fname = 'msvcr*.dll'
    key_list = ['PATH']
    found = ut.search_env_paths(fname, key_list)
    fpaths = ut.unique(ut.flatten(found.values()))
    fpaths = ut.lmap(ut.ensure_unixslash, fpaths)
    from os.path import basename
    dllnames = [basename(x) for x in fpaths]
    grouped = dict(ut.group_items(fpaths, dllnames))
    print(ut.dict_str(grouped, nl=4))

    keytoid = {}

    for key, vals in grouped.items():
        infos = ut.lmap(ut.get_file_nBytes, vals)
        #infos = ut.lmap(ut.get_file_uuid, vals)
        #uuids = [ut.get_file_uuid(val) for val in vals]
        keytoid[key] = list(zip(infos, vals))
    ut.print_dict(keytoid, nl=2)
示例#15
0
def __debug_win_msvcr():
    import utool as ut
    fname = 'msvcr*.dll'
    key_list = ['PATH']
    found = ut.search_env_paths(fname, key_list)
    fpaths = ut.unique(ut.flatten(found.values()))
    fpaths = ut.lmap(ut.ensure_unixslash, fpaths)
    from os.path import basename
    dllnames = [basename(x) for x in fpaths]
    grouped = dict(ut.group_items(fpaths, dllnames))
    print(ut.repr4(grouped, nl=4))

    keytoid = {
    }

    for key, vals in grouped.items():
        infos = ut.lmap(ut.get_file_nBytes, vals)
        #infos = ut.lmap(ut.get_file_uuid, vals)
        #uuids = [ut.get_file_uuid(val) for val in vals]
        keytoid[key] = list(zip(infos, vals))
    ut.print_dict(keytoid, nl=2)
示例#16
0
    def _exec_pairwise_match(extr, edges, prog_hook=None):
        """
        Performs one-vs-one matching between pairs of annotations.
        This establishes the feature correspondences.

        CommandLine:
            python -m wbia.algo.verif.pairfeat _exec_pairwise_match --show

        Example:
            >>> # ENABLE_DOCTEST
            >>> from wbia.algo.verif.pairfeat import *  # NOQA
            >>> import wbia
            >>> ibs = wbia.opendb('testdb1')
            >>> match_config = dict(histeq=True)
            >>> extr = PairwiseFeatureExtractor(ibs, match_config=match_config)
            >>> edges = [(1, 2), (2, 3)]
            >>> prog_hook = None
            >>> match_list = extr._exec_pairwise_match(edges)
            >>> match1, match2 = match_list
            >>> assert match1.annot2 is match2.annot1
            >>> assert match1.annot1 is not match2.annot2
            >>> ut.quit_if_noshow()
            >>> match2.show()
            >>> ut.show_if_requested()
        """
        if extr.verbose:
            logger.info('[extr] executing pairwise one-vs-one matching')
        ibs = extr.ibs
        match_config = extr.match_config
        edges = ut.lmap(tuple, ut.aslist(edges))
        qaids = ut.take_column(edges, 0)
        daids = ut.take_column(edges, 1)

        # The depcache does the pairwise matching procedure
        match_list = ibs.depc.get('pairwise_match', (qaids, daids),
                                  'match',
                                  config=match_config)

        # Hack: Postprocess matches to re-add wbia annotation info
        # in lazy-dict format
        from wbia import core_annots

        config = ut.hashdict(match_config)
        qannot_cfg = dannot_cfg = config
        preload = True
        configured_lazy_annots = core_annots.make_configured_annots(
            ibs, qaids, daids, qannot_cfg, dannot_cfg, preload=preload)
        for qaid, daid, match in zip(qaids, daids, match_list):
            match.annot1 = configured_lazy_annots[config][qaid]
            match.annot2 = configured_lazy_annots[config][daid]
            match.config = config
        return match_list
示例#17
0
 def dataset_id(dataset):
     shape_str = 'x'.join(ut.lmap(str, dataset._info['data_shape']))
     num_data = dataset._info['num_data']
     parts = []
     if dataset.name is not None:
         parts.append(dataset.name)
     if num_data is not None:
         parts.append(str(num_data))
     parts.append(shape_str)
     if dataset.hashid:
         parts.append(dataset.hashid)
     dsid = '_'.join(parts)
     return dsid
示例#18
0
def fix_splits_interaction(ibs):
    """
    python -m wbia fix_splits_interaction --show

    Example:
        >>> # DISABLE_DOCTEST GGR
        >>> from wbia.other.dbinfo import *  # NOQA
        >>> import wbia
        >>> dbdir = '/media/danger/GGR/GGR-IBEIS'
        >>> dbdir = dbdir if ut.checkpath(dbdir) else ut.truepath('~/lev/media/danger/GGR/GGR-IBEIS')
        >>> ibs = wbia.opendb(dbdir=dbdir, allow_newdir=False)
        >>> import wbia.guitool as gt
        >>> gt.ensure_qtapp()
        >>> win = fix_splits_interaction(ibs)
        >>> ut.quit_if_noshow()
        >>> import wbia.plottool as pt
        >>> gt.qtapp_loop(qwin=win)
    """
    split_props = {'splitcase', 'photobomb'}
    all_annot_groups = ibs._annot_groups(
        ibs.group_annots_by_name(ibs.get_valid_aids())[0])
    all_has_split = [
        len(split_props.intersection(ut.flatten(tags))) > 0
        for tags in all_annot_groups.match_tags
    ]
    tosplit_annots = ut.compress(all_annot_groups.annots_list, all_has_split)

    tosplit_annots = ut.take(tosplit_annots,
                             ut.argsort(ut.lmap(len, tosplit_annots)))[::-1]
    if ut.get_argflag('--reverse'):
        tosplit_annots = tosplit_annots[::-1]
    logger.info('len(tosplit_annots) = %r' % (len(tosplit_annots), ))
    aids_list = [a.aids for a in tosplit_annots]

    from wbia.algo.graph import graph_iden
    from wbia.viz import viz_graph2
    import wbia.guitool as gt
    import wbia.plottool as pt

    pt.qt4ensure()
    gt.ensure_qtapp()

    for aids in ut.InteractiveIter(aids_list):
        infr = graph_iden.AnnotInference(ibs, aids)
        infr.initialize_graph()
        win = viz_graph2.AnnotGraphWidget(infr=infr,
                                          use_image=False,
                                          init_mode='rereview')
        win.populate_edge_model()
        win.show()
    return win
示例#19
0
 def get_homog_list_nbytes_nested(list_nested):
     if list_nested is None:
         return 0
     if len(list_nested) == 0:
         return 0
     else:
         val = list_nested[0]
         if isinstance(val, np.ndarray):
             nbytes = sum(sys.getsizeof(v) for v in list_nested)
             #item_nbytes = sum(v.nbytes for v in list_nested)
         else:
             nest_nbytes = sys.getsizeof(val) * len(list_nested)
             totals = sum(ut.lmap(len, list_nested))
             item_nbytes = sys.getsizeof(val[0]) * totals
             nbytes = nest_nbytes + item_nbytes
         return nbytes
示例#20
0
 def edge_attr_df(infr, key, edges=None, default=ut.NoParam):
     """ constructs DataFrame using current predictions """
     edge_states = infr.gen_edge_attrs(key, edges=edges, default=default)
     edge_states = list(edge_states)
     if isinstance(edges, pd.MultiIndex):
         index = edges
     else:
         if edges is None:
             edges_ = ut.take_column(edge_states, 0)
         else:
             edges_ = ut.lmap(tuple, ut.aslist(edges))
         index = pd.MultiIndex.from_tuples(edges_, names=('aid1', 'aid2'))
     records = ut.itake_column(edge_states, 1)
     edge_df = pd.Series.from_array(records)
     edge_df.name = key
     edge_df.index = index
     return edge_df
示例#21
0
    def load_feat_scores(qreq_, qaids):
        import wbia  # NOQA
        from os.path import dirname, join  # NOQA

        # HACKY CACHE
        cfgstr = qreq_.get_cfgstr(with_input=True)
        cache_dir = join(dirname(dirname(wbia.__file__)),
                         'TMP_FEATSCORE_CACHE')
        namemode = ut.get_argval('--namemode', default=True)
        fsvx = ut.get_argval('--fsvx',
                             type_='fuzzy_subset',
                             default=slice(None, None, None))
        threshx = ut.get_argval('--threshx', type_=int, default=None)
        thresh = ut.get_argval('--thresh', type_=float, default=0.9)
        num = ut.get_argval('--num', type_=int, default=1)
        cfg_components = [
            cfgstr, disttype, namemode, fsvx, threshx, thresh, f, num
        ]
        cache_cfgstr = ','.join(ut.lmap(six.text_type, cfg_components))
        cache_hashid = ut.hashstr27(cache_cfgstr + '_v1')
        cache_name = 'get_cfgx_feat_scores_' + cache_hashid

        @ut.cached_func(cache_name,
                        cache_dir=cache_dir,
                        key_argx=[],
                        use_cache=True)
        def get_cfgx_feat_scores(qreq_, qaids):
            from wbia.algo.hots import scorenorm

            cm_list = qreq_.execute(qaids)
            # logger.info('Done loading cached chipmatches')
            tup = scorenorm.get_training_featscores(qreq_,
                                                    cm_list,
                                                    disttype,
                                                    namemode,
                                                    fsvx,
                                                    threshx,
                                                    thresh,
                                                    num=num)
            # logger.info(ut.depth_profile(tup))
            tp_scores, tn_scores, scorecfg = tup
            return tp_scores, tn_scores, scorecfg

        tp_scores, tn_scores, scorecfg = get_cfgx_feat_scores(qreq_, qaids)
        return tp_scores, tn_scores, scorecfg
示例#22
0
 def inplace_filter_results(self, filter_pat):
     import utool as ut
     self.filter_pats.append(filter_pat)
     # Get zipflags
     flags_list = self.pattern_filterflags(filter_pat)
     # Check to see if there are any survivors
     flags = ut.lmap(any, flags_list)
     #
     found_lines_list = ut.zipcompress(self.found_lines_list, flags_list)
     found_lxs_list = ut.zipcompress(self.found_lxs_list, flags_list)
     #
     found_fpath_list = ut.compress(self.found_fpath_list, flags)
     found_lines_list = ut.compress(found_lines_list, flags)
     found_lxs_list = ut.compress(found_lxs_list, flags)
     # In place modification
     self.found_fpath_list = found_fpath_list
     self.found_lines_list = found_lines_list
     self.found_lxs_list = found_lxs_list
示例#23
0
 def inplace_filter_results(self, filter_pat):
     import utool as ut
     self.filter_pats.append(filter_pat)
     # Get zipflags
     flags_list = self.pattern_filterflags(filter_pat)
     # Check to see if there are any survivors
     flags = ut.lmap(any, flags_list)
     #
     found_lines_list = ut.zipcompress(self.found_lines_list, flags_list)
     found_lxs_list = ut.zipcompress(self.found_lxs_list, flags_list)
     #
     found_fpath_list = ut.compress(self.found_fpath_list, flags)
     found_lines_list = ut.compress(found_lines_list, flags)
     found_lxs_list = ut.compress(found_lxs_list, flags)
     # In place modification
     self.found_fpath_list = found_fpath_list
     self.found_lines_list = found_lines_list
     self.found_lxs_list = found_lxs_list
示例#24
0
def purge_ensure_one_annot_per_images(ibs):
    """
    pip install Pipe
    """
    # Purge all but one annotation
    images = ibs.images()
    # images.aids
    groups = images._annot_groups
    import numpy as np

    # Take all but the largest annotations per images
    large_masks = [
        ut.index_to_boolmask([np.argmax(x)], len(x)) for x in groups.bbox_area
    ]
    small_masks = ut.lmap(ut.not_list, large_masks)
    # Remove all but the largets annotation
    small_aids = ut.zipcompress(groups.aid, small_masks)
    small_aids = ut.flatten(small_aids)

    # Fix any empty images
    images = ibs.images()
    empty_images = ut.where(np.array(images.num_annotations) == 0)
    logger.info('empty_images = %r' % (empty_images, ))

    # list(map(basename, map(dirname, images.uris_original)))

    def VecPipe(func):
        import pipe

        @pipe.Pipe
        def wrapped(sequence):
            return map(func, sequence)
            # return (None if item is None else func(item) for item in sequence)

        return wrapped

    name_list = list(images.uris_original | VecPipe(dirname)
                     | VecPipe(basename))
    aids_list = images.aids
    ut.assert_all_eq(list(aids_list | VecPipe(len)))
    annots = ibs.annots(ut.flatten(aids_list))
    annots.names = name_list
示例#25
0
def split_analysis(ibs):
    """
    CommandLine:
        python -m ibeis.other.dbinfo split_analysis --show
        python -m ibeis split_analysis --show
        python -m ibeis split_analysis --show --good

    Ignore:
        # mount
        sshfs -o idmap=user lev:/ ~/lev

        # unmount
        fusermount -u ~/lev

    Example:
        >>> # DISABLE_DOCTEST GGR
        >>> from ibeis.other.dbinfo import *  # NOQA
        >>> import ibeis
        >>> dbdir = '/media/danger/GGR/GGR-IBEIS'
        >>> dbdir = dbdir if ut.checkpath(dbdir) else ut.truepath('~/lev/media/danger/GGR/GGR-IBEIS')
        >>> ibs = ibeis.opendb(dbdir=dbdir, allow_newdir=False)
        >>> import guitool_ibeis as gt
        >>> gt.ensure_qtapp()
        >>> win = split_analysis(ibs)
        >>> ut.quit_if_noshow()
        >>> import plottool_ibeis as pt
        >>> gt.qtapp_loop(qwin=win)
        >>> #ut.show_if_requested()
    """
    #nid_list = ibs.get_valid_nids(filter_empty=True)
    import datetime
    day1 = datetime.date(2016, 1, 30)
    day2 = datetime.date(2016, 1, 31)

    filter_kw = {
        'multiple': None,
        #'view': ['right'],
        #'minqual': 'good',
        'is_known': True,
        'min_pername': 1,
    }
    aids1 = ibs.filter_annots_general(filter_kw=ut.dict_union(
        filter_kw, {
            'min_unixtime': ut.datetime_to_posixtime(ut.date_to_datetime(day1, 0.0)),
            'max_unixtime': ut.datetime_to_posixtime(ut.date_to_datetime(day1, 1.0)),
        })
    )
    aids2 = ibs.filter_annots_general(filter_kw=ut.dict_union(
        filter_kw, {
            'min_unixtime': ut.datetime_to_posixtime(ut.date_to_datetime(day2, 0.0)),
            'max_unixtime': ut.datetime_to_posixtime(ut.date_to_datetime(day2, 1.0)),
        })
    )
    all_aids = aids1 + aids2
    all_annots = ibs.annots(all_aids)
    print('%d annots on day 1' % (len(aids1)) )
    print('%d annots on day 2' % (len(aids2)) )
    print('%d annots overall' % (len(all_annots)) )
    print('%d names overall' % (len(ut.unique(all_annots.nids))) )

    nid_list, annots_list = all_annots.group(all_annots.nids)

    REVIEWED_EDGES = True
    if REVIEWED_EDGES:
        aids_list = [annots.aids for annots in annots_list]
        #aid_pairs = [annots.get_am_aidpairs() for annots in annots_list]  # Slower
        aid_pairs = ibs.get_unflat_am_aidpairs(aids_list)  # Faster
    else:
        # ALL EDGES
        aid_pairs = [annots.get_aidpairs() for annots in annots_list]

    speeds_list = ibs.unflat_map(ibs.get_annotpair_speeds, aid_pairs)
    import vtool_ibeis as vt
    max_speeds = np.array([vt.safe_max(s, nans=False) for s in speeds_list])

    nan_idx = np.where(np.isnan(max_speeds))[0]
    inf_idx = np.where(np.isinf(max_speeds))[0]
    bad_idx = sorted(ut.unique(ut.flatten([inf_idx, nan_idx])))
    ok_idx = ut.index_complement(bad_idx, len(max_speeds))

    print('#nan_idx = %r' % (len(nan_idx),))
    print('#inf_idx = %r' % (len(inf_idx),))
    print('#ok_idx = %r' % (len(ok_idx),))

    ok_speeds = max_speeds[ok_idx]
    ok_nids = ut.take(nid_list, ok_idx)
    ok_annots = ut.take(annots_list, ok_idx)
    sortx = np.argsort(ok_speeds)[::-1]

    sorted_speeds = np.array(ut.take(ok_speeds, sortx))
    sorted_annots = np.array(ut.take(ok_annots, sortx))
    sorted_nids = np.array(ut.take(ok_nids, sortx))  # NOQA

    sorted_speeds = np.clip(sorted_speeds, 0, 100)

    #idx = vt.find_elbow_point(sorted_speeds)
    #EXCESSIVE_SPEED = sorted_speeds[idx]
    # http://www.infoplease.com/ipa/A0004737.html
    # http://www.speedofanimals.com/animals/zebra
    #ZEBRA_SPEED_MAX  = 64  # km/h
    #ZEBRA_SPEED_RUN  = 50  # km/h
    ZEBRA_SPEED_SLOW_RUN  = 20  # km/h
    #ZEBRA_SPEED_FAST_WALK = 10  # km/h
    #ZEBRA_SPEED_WALK = 7  # km/h

    MAX_SPEED = ZEBRA_SPEED_SLOW_RUN
    #MAX_SPEED = ZEBRA_SPEED_WALK
    #MAX_SPEED = EXCESSIVE_SPEED

    flags = sorted_speeds > MAX_SPEED
    flagged_ok_annots = ut.compress(sorted_annots, flags)
    inf_annots = ut.take(annots_list, inf_idx)
    flagged_annots = inf_annots + flagged_ok_annots

    print('MAX_SPEED = %r km/h' % (MAX_SPEED,))
    print('%d annots with infinite speed' % (len(inf_annots),))
    print('%d annots with large speed' % (len(flagged_ok_annots),))
    print('Marking all pairs of annots above the threshold as non-matching')

    from ibeis.algo.graph import graph_iden
    import networkx as nx
    progkw = dict(freq=1, bs=True, est_window=len(flagged_annots))

    bad_edges_list = []
    good_edges_list = []
    for annots in ut.ProgIter(flagged_annots, lbl='flag speeding names', **progkw):
        edge_to_speeds = annots.get_speeds()
        bad_edges = [edge for edge, speed in edge_to_speeds.items() if speed > MAX_SPEED]
        good_edges = [edge for edge, speed in edge_to_speeds.items() if speed <= MAX_SPEED]
        bad_edges_list.append(bad_edges)
        good_edges_list.append(good_edges)
    all_bad_edges = ut.flatten(bad_edges_list)
    good_edges_list = ut.flatten(good_edges_list)
    print('num_bad_edges = %r' % (len(ut.flatten(bad_edges_list)),))
    print('num_bad_edges = %r' % (len(ut.flatten(good_edges_list)),))

    if 1:
        from ibeis.viz import viz_graph2
        import guitool_ibeis as gt
        gt.ensure_qtapp()

        if ut.get_argflag('--good'):
            print('Looking at GOOD (no speed problems) edges')
            aid_pairs = good_edges_list
        else:
            print('Looking at BAD (speed problems) edges')
            aid_pairs = all_bad_edges
        aids = sorted(list(set(ut.flatten(aid_pairs))))
        infr = graph_iden.AnnotInference(ibs, aids, verbose=False)
        infr.initialize_graph()

        # Use random scores to randomize sort order
        rng = np.random.RandomState(0)
        scores = (-rng.rand(len(aid_pairs)) * 10).tolist()
        infr.graph.add_edges_from(aid_pairs)

        if True:
            edge_sample_size = 250
            pop_nids = ut.unique(ibs.get_annot_nids(ut.unique(ut.flatten(aid_pairs))))
            sorted_pairs = ut.sortedby(aid_pairs, scores)[::-1][0:edge_sample_size]
            sorted_nids = ibs.get_annot_nids(ut.take_column(sorted_pairs, 0))
            sample_size = len(ut.unique(sorted_nids))
            am_rowids = ibs.get_annotmatch_rowid_from_undirected_superkey(*zip(*sorted_pairs))
            flags = ut.not_list(ut.flag_None_items(am_rowids))
            #am_rowids = ut.compress(am_rowids, flags)
            positive_tags = ['SplitCase', 'Photobomb']
            flags_list = [ut.replace_nones(ibs.get_annotmatch_prop(tag, am_rowids), 0)
                          for tag in positive_tags]
            print('edge_case_hist: ' + ut.repr3(
                ['%s %s' % (txt, sum(flags_)) for flags_, txt in zip(flags_list, positive_tags)]))
            is_positive = ut.or_lists(*flags_list)
            num_positive = sum(ut.lmap(any, ut.group_items(is_positive, sorted_nids).values()))
            pop = len(pop_nids)
            print('A positive is any edge flagged as a %s' % (ut.conj_phrase(positive_tags, 'or'),))
            print('--- Sampling wrt edges ---')
            print('edge_sample_size  = %r' % (edge_sample_size,))
            print('edge_population_size = %r' % (len(aid_pairs),))
            print('num_positive_edges = %r' % (sum(is_positive)))
            print('--- Sampling wrt names ---')
            print('name_population_size = %r' % (pop,))
            vt.calc_error_bars_from_sample(sample_size, num_positive, pop, conf_level=.95)

        nx.set_edge_attributes(infr.graph, name='score', values=dict(zip(aid_pairs, scores)))

        win = viz_graph2.AnnotGraphWidget(infr=infr, use_image=False,
                                          init_mode=None)
        win.populate_edge_model()
        win.show()
        return win
        # Make review interface for only bad edges

    infr_list = []
    iter_ = list(zip(flagged_annots, bad_edges_list))
    for annots, bad_edges in ut.ProgIter(iter_, lbl='creating inference', **progkw):
        aids = annots.aids
        nids = [1] * len(aids)
        infr = graph_iden.AnnotInference(ibs, aids, nids, verbose=False)
        infr.initialize_graph()
        infr.reset_feedback()
        infr_list.append(infr)

    # Check which ones are user defined as incorrect
    #num_positive = 0
    #for infr in infr_list:
    #    flag = np.any(infr.get_feedback_probs()[0] == 0)
    #    num_positive += flag
    #print('num_positive = %r' % (num_positive,))
    #pop = len(infr_list)
    #print('pop = %r' % (pop,))

    iter_ = list(zip(infr_list, bad_edges_list))
    for infr, bad_edges in ut.ProgIter(iter_, lbl='adding speed edges', **progkw):
        flipped_edges = []
        for aid1, aid2 in bad_edges:
            if infr.graph.has_edge(aid1, aid2):
                flipped_edges.append((aid1, aid2))
            infr.add_feedback((aid1, aid2), NEGTV)
        nx.set_edge_attributes(infr.graph, name='_speed_split', values='orig')
        nx.set_edge_attributes(infr.graph, name='_speed_split', values={edge: 'new' for edge in bad_edges})
        nx.set_edge_attributes(infr.graph, name='_speed_split', values={edge: 'flip' for edge in flipped_edges})

    #for infr in ut.ProgIter(infr_list, lbl='flagging speeding edges', **progkw):
    #    annots = ibs.annots(infr.aids)
    #    edge_to_speeds = annots.get_speeds()
    #    bad_edges = [edge for edge, speed in edge_to_speeds.items() if speed > MAX_SPEED]

    def inference_stats(infr_list_):
        relabel_stats = []
        for infr in infr_list_:
            num_ccs, num_inconsistent = infr.relabel_using_reviews()
            state_hist = ut.dict_hist(nx.get_edge_attributes(infr.graph, 'decision').values())
            if POSTV not in state_hist:
                state_hist[POSTV] = 0
            hist = ut.dict_hist(nx.get_edge_attributes(infr.graph, '_speed_split').values())

            subgraphs = infr.positive_connected_compoments()
            subgraph_sizes = [len(g) for g in subgraphs]

            info = ut.odict([
                ('num_nonmatch_edges', state_hist[NEGTV]),
                ('num_match_edges', state_hist[POSTV]),
                ('frac_nonmatch_edges',  state_hist[NEGTV] / (state_hist[POSTV] + state_hist[NEGTV])),
                ('num_inconsistent', num_inconsistent),
                ('num_ccs', num_ccs),
                ('edges_flipped', hist.get('flip', 0)),
                ('edges_unchanged', hist.get('orig', 0)),
                ('bad_unreviewed_edges', hist.get('new', 0)),
                ('orig_size', len(infr.graph)),
                ('new_sizes', subgraph_sizes),
            ])
            relabel_stats.append(info)
        return relabel_stats

    relabel_stats = inference_stats(infr_list)

    print('\nAll Split Info:')
    lines = []
    for key in relabel_stats[0].keys():
        data = ut.take_column(relabel_stats, key)
        if key == 'new_sizes':
            data = ut.flatten(data)
        lines.append('stats(%s) = %s' % (key, ut.repr2(ut.get_stats(data, use_median=True), precision=2)))
    print('\n'.join(ut.align_lines(lines, '=')))

    num_incon_list = np.array(ut.take_column(relabel_stats, 'num_inconsistent'))
    can_split_flags = num_incon_list == 0
    print('Can trivially split %d / %d' % (sum(can_split_flags), len(can_split_flags)))

    splittable_infrs = ut.compress(infr_list, can_split_flags)

    relabel_stats = inference_stats(splittable_infrs)

    print('\nTrival Split Info:')
    lines = []
    for key in relabel_stats[0].keys():
        if key in ['num_inconsistent']:
            continue
        data = ut.take_column(relabel_stats, key)
        if key == 'new_sizes':
            data = ut.flatten(data)
        lines.append('stats(%s) = %s' % (
            key, ut.repr2(ut.get_stats(data, use_median=True), precision=2)))
    print('\n'.join(ut.align_lines(lines, '=')))

    num_match_edges = np.array(ut.take_column(relabel_stats, 'num_match_edges'))
    num_nonmatch_edges = np.array(ut.take_column(relabel_stats, 'num_nonmatch_edges'))
    flags1 = np.logical_and(num_match_edges > num_nonmatch_edges, num_nonmatch_edges < 3)
    reasonable_infr = ut.compress(splittable_infrs, flags1)

    new_sizes_list = ut.take_column(relabel_stats, 'new_sizes')
    flags2 = [len(sizes) == 2 and sum(sizes) > 4 and (min(sizes) / max(sizes)) > .3
              for sizes in new_sizes_list]
    reasonable_infr = ut.compress(splittable_infrs, flags2)
    print('#reasonable_infr = %r' % (len(reasonable_infr),))

    for infr in ut.InteractiveIter(reasonable_infr):
        annots = ibs.annots(infr.aids)
        edge_to_speeds = annots.get_speeds()
        print('max_speed = %r' % (max(edge_to_speeds.values())),)
        infr.initialize_visual_node_attrs()
        infr.show_graph(use_image=True, only_reviewed=True)

    rest = ~np.logical_or(flags1, flags2)
    nonreasonable_infr = ut.compress(splittable_infrs, rest)
    rng = np.random.RandomState(0)
    random_idx = ut.random_indexes(len(nonreasonable_infr) - 1, 15, rng=rng)
    random_infr = ut.take(nonreasonable_infr, random_idx)
    for infr in ut.InteractiveIter(random_infr):
        annots = ibs.annots(infr.aids)
        edge_to_speeds = annots.get_speeds()
        print('max_speed = %r' % (max(edge_to_speeds.values())),)
        infr.initialize_visual_node_attrs()
        infr.show_graph(use_image=True, only_reviewed=True)

    #import scipy.stats as st
    #conf_interval = .95
    #st.norm.cdf(conf_interval)
    # view-source:http://www.surveysystem.com/sscalc.htm
    #zval = 1.96  # 95 percent confidence
    #zValC = 3.8416  #
    #zValC = 6.6564

    #import statsmodels.stats.api as sms
    #es = sms.proportion_effectsize(0.5, 0.75)
    #sms.NormalIndPower().solve_power(es, power=0.9, alpha=0.05, ratio=1)

    pop = 279
    num_positive = 3
    sample_size = 15
    conf_level = .95
    #conf_level = .99
    vt.calc_error_bars_from_sample(sample_size, num_positive, pop, conf_level)
    print('---')
    vt.calc_error_bars_from_sample(sample_size + 38, num_positive, pop, conf_level)
    print('---')
    vt.calc_error_bars_from_sample(sample_size + 38 / 3, num_positive, pop, conf_level)
    print('---')

    vt.calc_error_bars_from_sample(15 + 38, num_positive=3, pop=675, conf_level=.95)
    vt.calc_error_bars_from_sample(15, num_positive=3, pop=675, conf_level=.95)

    pop = 279
    #err_frac = .05  # 5%
    err_frac = .10  # 10%
    conf_level = .95
    vt.calc_sample_from_error_bars(err_frac, pop, conf_level)

    pop = 675
    vt.calc_sample_from_error_bars(err_frac, pop, conf_level)
    vt.calc_sample_from_error_bars(.05, pop, conf_level=.95, prior=.1)
    vt.calc_sample_from_error_bars(.05, pop, conf_level=.68, prior=.2)
    vt.calc_sample_from_error_bars(.10, pop, conf_level=.68)

    vt.calc_error_bars_from_sample(100, num_positive=5, pop=675, conf_level=.95)
    vt.calc_error_bars_from_sample(100, num_positive=5, pop=675, conf_level=.68)
示例#26
0
 def num_uncolored(self):
     return sum(ut.lmap(int, self.type2_manas.get('uncolored', [])))
示例#27
0
    ut.set_project_repos(IBEIS_REPO_URLS, IBEIS_REPO_DIRS)
    ut.gg_command('{pythoncmd} setup.py develop'.format(**locals()),
                  sudo=not ut.in_virtual_env())

if GET_ARGFLAG('--install'):
    # Dont use this if you are a developer. Use develop instead.
    ut.set_project_repos(IBEIS_REPO_URLS, IBEIS_REPO_DIRS)
    ut.gg_command('python setup.py install'.format(**locals()))

if GET_ARGFLAG('--test'):
    failures = []
    for repo_dpath in IBEIS_REPO_DIRS:
        # ut.getp_
        mod_dpaths = ut.get_submodules_from_dpath(repo_dpath, recursive=False,
                                                  only_packages=True)
        modname_list = ut.lmap(ut.get_modname_from_modpath, mod_dpaths)
        print('Checking modules = %r' % (modname_list,))

        for modname in modname_list:
            try:
                ut.import_modname(modname)
                print(modname + ' success')
            except ImportError as ex:
                failures += [modname]
                print(modname + ' failure')

    print('failures = %s' % (ut.repr3(failures),))
    # print('repo_dpath = %r' % (repo_dpath,))
    # print('modules = %r' % (modules,))

    # import ibeis
示例#28
0
def update_bindings():
    r"""
    Returns:
        dict: matchtups

    CommandLine:
        python ~/local/build_scripts/flannscripts/autogen_bindings.py --exec-update_bindings
        utprof.py ~/local/build_scripts/flannscripts/autogen_bindings.py --exec-update_bindings

    Example:
        >>> # DISABLE_DOCTEST
        >>> from autogen_bindings import *  # NOQA
        >>> import sys
        >>> import utool as ut
        >>> sys.path.append(ut.truepath('~/local/build_scripts/flannscripts'))
        >>> matchtups = update_bindings()
        >>> result = ('matchtups = %s' % (ut.repr2(matchtups),))
        >>> print(result)
        >>> ut.quit_if_noshow()
        >>> import plottool as pt
        >>> ut.show_if_requested()
    """
    from os.path import basename
    import difflib
    import numpy as np
    import re
    binding_names = [
        'build_index',
        'used_memory',
        'add_points',
        'remove_point',
        'compute_cluster_centers',
        'load_index',
        'save_index',
        'find_nearest_neighbors',
        'radius_search',
        'remove_points',
        'free_index',
        'find_nearest_neighbors_index',

        # 'size',
        # 'veclen',
        # 'get_point',
        # 'flann_get_distance_order',
        # 'flann_get_distance_type',
        # 'flann_log_verbosity',

        # 'clean_removed_points',
    ]

    _places = [
        '~/code/flann/src/cpp/flann/flann.cpp',
        '~/code/flann/src/cpp/flann/flann.h',
        '~/code/flann/src/python/pyflann/flann_ctypes.py',
        '~/code/flann/src/python/pyflann/index.py',
    ]

    eof_sentinals = {
        # 'flann_ctypes.py': '# END DEFINE BINDINGS',
        'flann_ctypes.py': 'def ensure_2d_array(arr',
        # 'flann.h': '// END DEFINE BINDINGS',
        'flann.h': '#ifdef __cplusplus',
        'flann.cpp': None,
        'index.py': None,
    }
    block_sentinals = {
        'flann.h': re.escape('/**'),
        'flann.cpp': 'template *<typename Distance>',
        # 'flann_ctypes.py': '\n',
        'flann_ctypes.py': 'flann\.[a-z_.]* =',
        # 'index.py': '    def .*',
        'index.py': '    [^ ].*',
    }
    places = {
        basename(fpath): fpath
        for fpath in ut.lmap(ut.truepath, _places)
    }
    text_dict = ut.map_dict_vals(ut.readfrom, places)
    lines_dict = {key: val.split('\n') for key, val in text_dict.items()}
    orig_texts = text_dict.copy()  # NOQA
    binding_defs = {}
    named_blocks = {}

    print('binding_names = %r' % (binding_names, ))
    for binding_name in binding_names:
        blocks, defs = autogen_parts(binding_name)
        binding_defs[binding_name] = defs
        named_blocks[binding_name] = blocks

    for binding_name in ut.ProgIter(binding_names):
        ut.colorprint('+--- GENERATE BINDING %s -----' % (binding_name, ),
                      'yellow')
        blocks_dict = named_blocks[binding_name]
        for key in places.keys():
            ut.colorprint(
                '---- generating %s for %s -----' % (
                    binding_name,
                    key,
                ), 'yellow')
            # key = 'flann_ctypes.py'
            # print(text_dict[key])
            old_text = text_dict[key]
            line_list = lines_dict[key]
            #text = old_text
            block = blocks_dict[key]

            debug = ut.get_argflag('--debug')
            # debug = True
            # if debug:
            #     print(ut.highlight_code(block, splitext(key)[1]))

            # Find a place in the code that already exists

            searchblock = block
            if key.endswith('.cpp') or key.endswith('.h'):
                searchblock = re.sub(ut.REGEX_C_COMMENT,
                                     '',
                                     searchblock,
                                     flags=re.MULTILINE | re.DOTALL)
            searchblock = '\n'.join(searchblock.splitlines()[0:3])

            # @ut.cached_func(verbose=False)
            def cached_match(old_text, searchblock):
                def isjunk(x):
                    return False
                    return x in ' \t,*()'

                def isjunk2(x):
                    return x in ' \t,*()'

                # Not sure why the first one just doesnt find it
                # isjunk = None
                sm = difflib.SequenceMatcher(isjunk,
                                             old_text,
                                             searchblock,
                                             autojunk=False)
                sm0 = difflib.SequenceMatcher(isjunk,
                                              old_text,
                                              searchblock,
                                              autojunk=True)
                sm1 = difflib.SequenceMatcher(isjunk2,
                                              old_text,
                                              searchblock,
                                              autojunk=False)
                sm2 = difflib.SequenceMatcher(isjunk2,
                                              old_text,
                                              searchblock,
                                              autojunk=True)
                matchtups = (sm.get_matching_blocks() +
                             sm0.get_matching_blocks() +
                             sm1.get_matching_blocks() +
                             sm2.get_matching_blocks())
                return matchtups

            matchtups = cached_match(old_text, searchblock)
            # Find a reasonable match in matchtups

            found = False
            if debug:
                # print('searchblock =\n%s' % (searchblock,))
                print('searchblock = %r' % (searchblock, ))
            for (a, b, size) in matchtups:
                matchtext = old_text[a:a + size]
                pybind = binding_defs[binding_name]['py_binding_name']
                if re.search(binding_name + '\\b', matchtext) or re.search(
                        pybind + '\\b', matchtext):
                    found = True
                    pos = a + size
                    if debug:
                        print('MATCHING TEXT')
                        print(matchtext)
                    break
                else:
                    if debug and 0:
                        print('Not matching')
                        print('matchtext = %r' % (matchtext, ))
                        matchtext2 = old_text[a - 10:a + size + 20]
                        print('matchtext2 = %r' % (matchtext2, ))

            if found:
                linelens = np.array(ut.lmap(len, line_list)) + 1
                sumlen = np.cumsum(linelens)
                row = np.where(sumlen < pos)[0][-1] + 1
                #print(line_list[row])
                # Search for extents of the block to overwrite
                block_sentinal = block_sentinals[key]
                row1 = ut.find_block_end(row, line_list, block_sentinal,
                                         -1) - 1
                row2 = ut.find_block_end(row + 1, line_list, block_sentinal,
                                         +1)
                eof_sentinal = eof_sentinals[key]
                if eof_sentinal is not None:
                    print('eof_sentinal = %r' % (eof_sentinal, ))
                    row2 = min([
                        count for count, line in enumerate(line_list)
                        if line.startswith(eof_sentinal)
                    ][-1], row2)
                nr = len((block + '\n\n').splitlines())
                new_line_list = ut.insert_block_between_lines(
                    block + '\n', row1, row2, line_list)
                rtext1 = '\n'.join(line_list[row1:row2])
                rtext2 = '\n'.join(new_line_list[row1:row1 + nr])
                if debug:
                    print('-----')
                    ut.colorprint('FOUND AND REPLACING %s' % (binding_name, ),
                                  'yellow')
                    print(ut.highlight_code(rtext1))
                if debug:
                    print('-----')
                    ut.colorprint(
                        'FOUND AND REPLACED WITH %s' % (binding_name, ),
                        'yellow')
                    print(ut.highlight_code(rtext2))
                if not ut.get_argflag('--diff') and not debug:
                    print(
                        ut.color_diff_text(
                            ut.difftext(rtext1,
                                        rtext2,
                                        num_context_lines=7,
                                        ignore_whitespace=True)))
            else:
                # Append to end of the file
                eof_sentinal = eof_sentinals[key]
                if eof_sentinal is None:
                    row2 = len(line_list) - 1
                else:
                    row2_choice = [
                        count for count, line in enumerate(line_list)
                        if line.startswith(eof_sentinal)
                    ]
                    if len(row2_choice) == 0:
                        row2 = len(line_list) - 1
                        assert False
                    else:
                        row2 = row2_choice[-1] - 1

                # row1 = row2 - 1
                # row2 = row2 - 1
                row1 = row2

                new_line_list = ut.insert_block_between_lines(
                    block + '\n', row1, row2, line_list)
                # block + '\n\n\n', row1, row2, line_list)

                rtext1 = '\n'.join(line_list[row1:row2])
                nr = len((block + '\n\n').splitlines())
                rtext2 = '\n'.join(new_line_list[row1:row1 + nr])

                if debug:
                    print('-----')
                    ut.colorprint(
                        'NOT FOUND AND REPLACING %s' % (binding_name, ),
                        'yellow')
                    print(ut.highlight_code(rtext1))
                if debug:
                    print('-----')
                    ut.colorprint(
                        'NOT FOUND AND REPLACED WITH %s' % (binding_name, ),
                        'yellow')
                    print(ut.highlight_code(rtext2))

                if not ut.get_argflag('--diff') and not debug:
                    print(
                        ut.color_diff_text(
                            ut.difftext(rtext1,
                                        rtext2,
                                        num_context_lines=7,
                                        ignore_whitespace=True)))
            text_dict[key] = '\n'.join(new_line_list)
            lines_dict[key] = new_line_list
        ut.colorprint('L___  GENERATED BINDING %s ___' % (binding_name, ),
                      'yellow')

    for key in places:
        new_text = '\n'.join(lines_dict[key])
        #ut.writeto(ut.augpath(places[key], '.new'), new_text)
        ut.writeto(ut.augpath(places[key]), new_text)

    for key in places:
        if ut.get_argflag('--diff'):
            difftext = ut.get_textdiff(orig_texts[key],
                                       new_text,
                                       num_context_lines=7,
                                       ignore_whitespace=True)
            difftext = ut.color_diff_text(difftext)
            print(difftext)
示例#29
0
def testdata_depc(fname=None):
    """
    Example of local registration
    """

    import dtool
    import vtool as vt
    gpath_list = ut.lmap(ut.grab_test_imgpath, ut.get_valid_test_imgkeys(),
                         verbose=False)

    dummy_root = 'dummy_annot'

    def get_root_uuid(aid_list):
        return ut.lmap(ut.hashable_to_uuid, aid_list)

    # put the test cache in the dtool repo
    dtool_repo = dirname(ut.get_module_dir(dtool))
    cache_dpath = join(dtool_repo, 'DEPCACHE')

    depc = dtool.DependencyCache(
        root_tablename=dummy_root, default_fname=fname,
        cache_dpath=cache_dpath,
        get_root_uuid=get_root_uuid,
        #root_asobject=root_asobject,
        use_globals=False)

    @depc.register_preproc(tablename='chip', parents=[dummy_root],
                           colnames=['size', 'chip'],
                           coltypes=[(int, int), ('extern', vt.imread, vt.imwrite)],
                           configclass=DummyChipConfig)
    def dummy_preproc_chip(depc, annot_rowid_list, config=None):
        """
        TODO: Infer properties from docstr?

        Args:
            depc (dtool.DependencyCache):
            annot_rowid_list (list): list of annot rowids
            config (dict): config dictionary

        Returns:
            tuple : ((int, int), ('extern', vt.imread))
        """
        if config is None:
            config = {}
        # Demonstates using asobject to get input to function as a dictionary
        # of properties
        #for annot in annot_list:
        #print('[preproc] Computing chips of aid=%r' % (aid,))
        print('[preproc] Computing chips')
        for aid in annot_rowid_list:
            #aid = annot['aid']
            #chip_fpath = annot['gpath']
            chip_fpath = gpath_list[aid]
            #w, h = vt.image.open_image_size(chip_fpath)
            chip = vt.imread(chip_fpath)
            size = vt.get_size(chip)
            #size = (w, h)
            #print('* chip_fpath = %r' % (chip_fpath,))
            #print('* size = %r' % (size,))
            #yield size, chip_fpath
            yield size, chip

    @depc.register_preproc(
        'probchip', [dummy_root], ['size', 'probchip'],
        coltypes=[(int, int), ('extern', vt.imread, vt.imwrite, '.png')],
        configclass=ProbchipConfig,
    )
    def dummy_preproc_probchip(depc, root_rowids, config):
        print('[preproc] Computing probchip')
        for rowid in root_rowids:
            if config['testerror']:
                if rowid % 2 == 0:
                    # Test error yeilds None on even rowids
                    yield None
                    continue
            rng = np.random.RandomState(rowid)
            probchip = rng.randint(0, 255, size=(64, 64))
            #probchip = np.zeros((64, 64))
            size = (rowid, rowid)
            yield size, probchip

    @depc.register_preproc(
        'keypoint', ['chip'], ['kpts', 'num'], [np.ndarray, int],
        #default_onthefly=True,
        configclass=DummyKptsConfig,
        docstr='Used to store individual chip features (ellipses)',)
    def dummy_preproc_kpts(depc, chip_rowids, config=None):
        if config is None:
            config = {}
        print('config = %r' % (config,))
        adapt_shape = config['adapt_shape']
        print('[preproc] Computing kpts')
        for rowid in chip_rowids:
            if adapt_shape:
                kpts = np.zeros((7 + rowid, 6)) + rowid
            else:
                kpts = np.ones((7 + rowid, 6)) + rowid
            num = len(kpts)
            yield kpts, num

    @depc.register_preproc('descriptor', ['keypoint'], ['vecs'], [np.ndarray],)
    def dummy_preproc_vecs(depc, kp_rowid, config=None):
        if config is None:
            config = {}
        print('[preproc] Computing vecs')
        for rowid in kp_rowid:
            yield np.ones((7 + rowid, 8), dtype=np.uint8) + rowid,

    @depc.register_preproc('fgweight', ['keypoint', 'probchip'], ['fgweight'], [np.ndarray],)
    def dummy_preproc_fgweight(depc, kpts_rowid, probchip_rowid, config=None):
        if config is None:
            config = {}
        print('[preproc] Computing fgweight')
        for rowid1, rowid2 in zip(kpts_rowid, probchip_rowid):
            yield np.ones(7 + rowid1),

    @depc.register_preproc(
        tablename='vsmany', colnames='annotmatch', coltypes=DummyAnnotMatch,
        requestclass=DummyVsManyRequest, configclass=DummyVsManyConfig)
    def vsmany_matching(depc, qaids, config=None):
        """
        CommandLine:
            python -m dtool.base --exec-VsManySimilarityRequest
        """
        print('RUNNING DUMMY VSMANY ALGO')
        daids = config.daids
        qaids = qaids

        sver_on = config.dummy_sver_cfg['sver_on']
        kpts_list = depc.get_property('keypoint', qaids)  # NOQA
        #dummy_preproc_kpts
        for qaid in qaids:
            dnid_list = [1, 1, 2, 2]
            unique_nids = [1, 2]
            if sver_on:
                annot_score_list = [.2, .2, .4, .5]
                name_score_list = [.2, .5]
            else:
                annot_score_list = [.3, .3, .6, .9]
                name_score_list = [.1, .7]
            annot_match = DummyAnnotMatch(qaid, daids, dnid_list,
                                          annot_score_list, unique_nids,
                                          name_score_list)
            yield annot_match

    SIMPLE = 0
    if not SIMPLE:

        @depc.register_preproc(
            tablename='chipmask', parents=[dummy_root], colnames=['size', 'mask'],
            coltypes=[(int, int), ('extern', vt.imread, vt.imwrite)])
        def dummy_manual_chipmask(depc, parent_rowids, config=None):
            import vtool as vt
            from plottool import interact_impaint
            mask_dpath = join(depc.cache_dpath, 'ManualChipMask')
            ut.ensuredir(mask_dpath)
            if config is None:
                config = {}
            print('Requesting user defined chip mask')
            for rowid in parent_rowids:
                img = vt.imread(gpath_list[rowid])
                mask = interact_impaint.impaint_mask2(img)
                mask_fpath = join(mask_dpath, 'mask%d.png' % (rowid,))
                vt.imwrite(mask_fpath, mask)
                w, h = vt.get_size(mask)
                yield (w, h), mask_fpath

        @depc.register_preproc('notch', [dummy_root], ['notchdata'], [np.ndarray],)
        def dummy_preproc_notch(depc, parent_rowids, config=None):
            if config is None:
                config = {}
            print('[preproc] Computing notch')
            for rowid in parent_rowids:
                yield np.empty(5 + rowid),

        @depc.register_preproc(
            'spam', ['fgweight', 'chip', 'keypoint'],
            ['spam', 'eggs', 'size', 'uuid', 'vector', 'textdata'],
            [str, int, (int, int), uuid.UUID, np.ndarray, ('extern', ut.readfrom)],
            docstr='I dont like spam',)
        def dummy_preproc_spam(depc, *args, **kwargs):
            config = kwargs.get('config', None)
            if config is None:
                config = {}
            print('[preproc] Computing spam')
            ut.writeto('tmp.txt', ut.lorium_ipsum())
            for x in zip(*args):
                size = (42, 21)
                uuid = ut.get_zero_uuid()
                vector = np.ones(3)
                yield ('spam', 3665, size, uuid, vector, 'tmp.txt')

        @depc.register_preproc(
            'nnindexer', ['keypoint*'], ['flann'], [str],  # [('extern', ut.load_data)],
            configclass=DummyIndexerConfig,
        )
        def dummy_preproc_indexer(depc, parent_rowids_list, config=None):
            print('COMPUTING DUMMY INDEXER')
            #assert len(parent_rowids_list) == 1, 'handles only one indexer'
            for parent_rowids in parent_rowids_list:
                yield ('really cool flann object' + str(config.get_cfgstr()) + ' ' + str(parent_rowids),)

        @depc.register_preproc(
            'notchpair', ['notch', 'notch'], ['pairscore'], [int],  # [('extern', ut.load_data)],
            #configclass=DummyIndexerConfig,
        )
        def dummy_notchpair(depc, n1, n2, config=None):
            print('COMPUTING MULTITEST 1 ')
            #assert len(parent_rowids_list) == 1, 'handles only one indexer'
            for nn1, nn2 in zip(n1, n2):
                yield (nn1 + nn2,)

        @depc.register_preproc(
            'multitest', ['keypoint', 'notch', 'notch', 'fgweight*', 'notchpair*', 'notchpair*', 'notchpair', 'nnindexer'], ['foo'], [str],  # [('extern', ut.load_data)],
            #configclass=DummyIndexerConfig,
        )
        def dummy_multitest(depc, *args, **kwargs):
            print('COMPUTING MULTITEST 1 ')
            #assert len(parent_rowids_list) == 1, 'handles only one indexer'
            for x in zip(args):
                yield ('cool multi object' + str(kwargs) + ' ' + str(x),)

        # TEST MULTISET DEPENDENCIES
        @depc.register_preproc(
            'multitest_score', ['multitest'], ['score'], [int],  # [('extern', ut.load_data)],
            #configclass=DummyIndexerConfig,
        )
        def dummy_multitest_score(depc, parent_rowids, config=None):
            print('COMPUTING DEPENDENCY OF MULTITEST 1 ')
            #assert len(parent_rowids_list) == 1, 'handles only one indexer'
            for parent_rowids in zip(parent_rowids):
                yield (parent_rowids,)

        # TEST MULTISET DEPENDENCIES
        @depc.register_preproc(
            'multitest_score_x', ['multitest_score', 'multitest_score'], ['score'], [int],  # [('extern', ut.load_data)],
            #configclass=DummyIndexerConfig,
        )
        def multitest_score_x(depc, *args, **kwargs):
            raise NotImplementedError('hack')
        # REGISTER MATCHING ALGORITHMS

        @depc.register_preproc(tablename='neighbs', colnames=['qx2_idx', 'qx2_dist'],
                               coltypes=[np.ndarray, np.ndarray],
                               parents=['keypoint', 'fgweight', 'nnindexer', 'nnindexer'])
        def neighbs(depc, *args, **kwargs):
            """
            CommandLine:
                python -m dtool.base --exec-VsManySimilarityRequest
            """
            #dummy_preproc_kpts
            for qaid in zip(args):
                yield np.array([qaid]), np.array([qaid])

        @depc.register_preproc(tablename='neighbs_score', colnames=['qx2_dist'],
                               coltypes=[np.ndarray],
                               parents=['neighbs'])
        def neighbs_score(depc, *args, **kwargs):
            """
            CommandLine:
                python -m dtool.base --exec-VsManySimilarityRequest
            """
            raise NotImplementedError('hack')

        @depc.register_preproc(
            'vsone', [dummy_root, dummy_root],
            ['score', 'match_obj', 'fm'],
            [float, DummyVsOneMatch, np.ndarray],
            requestclass=DummyVsOneRequest,
            configclass=DummyVsOneConfig,
            chunksize=2
        )
        def vsone_matching(depc, qaids, daids, config):
            """
            CommandLine:
                python -m dtool.base --exec-VsOneSimilarityRequest
            """
            print('RUNNING DUMMY VSONE ALGO')
            for qaid, daid in zip(qaids, daids):
                match = DummyVsOneMatch()
                match.qaid = qaid
                match.daid = daid
                match.fm = np.array([[1, 2], [3, 4]])
                score = match.score = qaid + daid
                yield (score, match, match.fm)

    # table = depc['spam']
    # print(ut.repr2(table.get_addtable_kw(), nl=2))
    depc.initialize()
    # table.print_schemadef()
    # print(table.db.get_schema_current_autogeneration_str())
    return depc
示例#30
0
def try_query(model, infr, evidence, interest_ttypes=[], verbose=True):
    r"""
    CommandLine:
        python -m wbia.algo.hots.bayes --exec-try_query --show

    Example:
        >>> # DISABLE_DOCTEST
        >>> from wbia.algo.hots.bayes import *  # NOQA
        >>> verbose = True
        >>> other_evidence = {}
        >>> name_evidence = [1, None, 0, None]
        >>> score_evidence = ['high', 'low', 'low']
        >>> query_vars = None
        >>> model = make_name_model(num_annots=4, num_names=4, verbose=True, mode=1)
        >>> model, evidence, soft_evidence = update_model_evidence(model, name_evidence, score_evidence, other_evidence)
        >>> interest_ttypes = ['name']
        >>> infr = pgmpy.inference.BeliefPropagation(model)
        >>> evidence = infr._ensure_internal_evidence(evidence, model)
        >>> query_results = try_query(model, infr, evidence, interest_ttypes, verbose)
        >>> result = ('query_results = %s' % (str(query_results),))
        >>> ut.quit_if_noshow()
        >>> show_model(model, show_prior=True, **query_results)
        >>> ut.show_if_requested()

    Ignore:
        query_vars = ut.setdiff_ordered(model.nodes(), list(evidence.keys()))
        probs = infr.query(query_vars, evidence)
        map_assignment = infr.map_query(query_vars, evidence)
    """
    infr = pgmpy.inference.VariableElimination(model)
    # infr = pgmpy.inference.BeliefPropagation(model)
    if True:
        return bruteforce(model, query_vars=None, evidence=evidence)
    else:
        import vtool as vt

        query_vars = ut.setdiff_ordered(model.nodes(), list(evidence.keys()))
        # hack
        query_vars = ut.setdiff_ordered(
            query_vars, ut.list_getattr(model.ttype2_cpds['score'],
                                        'variable'))
        if verbose:
            evidence_str = ', '.join(model.pretty_evidence(evidence))
            logger.info('P(' + ', '.join(query_vars) + ' | ' + evidence_str +
                        ') = ')
        # Compute MAP joints
        # There is a bug here.
        # map_assign = infr.map_query(query_vars, evidence)
        # (probably an invalid thing to do)
        # joint_factor = pgmpy.factors.factor_product(*factor_list)
        # Brute force MAP

        name_vars = ut.list_getattr(model.ttype2_cpds['name'], 'variable')
        query_name_vars = ut.setdiff_ordered(name_vars, list(evidence.keys()))
        # TODO: incorporate case where Na is assigned to Fred
        # evidence_h = ut.delete_keys(evidence.copy(), ['Na'])

        joint = model.joint_distribution()
        joint.evidence_based_reduction(query_name_vars, evidence, inplace=True)

        # Find static row labels in the evidence
        given_name_vars = [var for var in name_vars if var in evidence]
        given_name_idx = ut.dict_take(evidence, given_name_vars)
        given_name_val = [
            joint.statename_dict[var][idx]
            for var, idx in zip(given_name_vars, given_name_idx)
        ]
        new_vals = joint.values.ravel()
        # Add static evidence variables to the relabeled name states
        new_vars = given_name_vars + joint.variables
        new_rows = [tuple(given_name_val) + row for row in joint._row_labels()]
        # Relabel rows based on the knowledge that
        # everything is the same, only the names have changed.
        temp_basis = [i for i in range(model.num_names)]

        def relabel_names(names, temp_basis=temp_basis):
            names = list(map(six.text_type, names))
            mapping = {}
            for n in names:
                if n not in mapping:
                    mapping[n] = len(mapping)
            new_names = tuple([temp_basis[mapping[n]] for n in names])
            return new_names

        relabeled_rows = list(map(relabel_names, new_rows))
        # Combine probability of rows with the same (new) label
        data_ids = np.array(vt.other.compute_unique_data_ids_(relabeled_rows))
        unique_ids, groupxs = vt.group_indices(data_ids)
        reduced_row_lbls = ut.take(relabeled_rows,
                                   ut.get_list_column(groupxs, 0))
        reduced_row_lbls = list(map(list, reduced_row_lbls))
        reduced_values = np.array(
            [g.sum() for g in vt.apply_grouping(new_vals, groupxs)])
        # Relabel the rows one more time to agree with initial constraints
        used_ = []
        replaced = []
        for colx, (var, val) in enumerate(zip(given_name_vars,
                                              given_name_val)):
            # All columns must be the same for this labeling
            alias = reduced_row_lbls[0][colx]
            reduced_row_lbls = ut.list_replace(reduced_row_lbls, alias, val)
            replaced.append(alias)
            used_.append(val)
        basis = model.ttype2_cpds['name'][0]._template_.basis
        find_remain_ = ut.setdiff_ordered(temp_basis, replaced)
        repl_remain_ = ut.setdiff_ordered(basis, used_)
        for find, repl in zip(find_remain_, repl_remain_):
            reduced_row_lbls = ut.list_replace(reduced_row_lbls, find, repl)

        # Now find the most likely state
        sortx = reduced_values.argsort()[::-1]
        sort_reduced_row_lbls = ut.take(reduced_row_lbls, sortx.tolist())
        sort_reduced_values = reduced_values[sortx]

        # Remove evidence based labels
        new_vars_ = new_vars[len(given_name_vars):]
        sort_reduced_row_lbls_ = ut.get_list_column(
            sort_reduced_row_lbls, slice(len(given_name_vars), None))

        sort_reduced_row_lbls_[0]

        # hack into a new joint factor
        var_states = ut.lmap(ut.unique_ordered, zip(*sort_reduced_row_lbls_))
        statename_dict = dict(zip(new_vars, var_states))
        cardinality = ut.lmap(len, var_states)
        val_lookup = dict(
            zip(ut.lmap(tuple, sort_reduced_row_lbls_), sort_reduced_values))
        values = np.zeros(np.prod(cardinality))
        for idx, state in enumerate(ut.iprod(*var_states)):
            if state in val_lookup:
                values[idx] = val_lookup[state]
        joint2 = pgmpy.factors.Factor(new_vars_,
                                      cardinality,
                                      values,
                                      statename_dict=statename_dict)
        logger.info(joint2)
        max_marginals = {}
        for i, var in enumerate(query_name_vars):
            one_out = query_name_vars[:i] + query_name_vars[i + 1:]
            max_marginals[var] = joint2.marginalize(one_out, inplace=False)
            # max_marginals[var] = joint2.maximize(one_out, inplace=False)
        logger.info(joint2.marginalize(['Nb', 'Nc'], inplace=False))
        factor_list = max_marginals.values()

        # Better map assignment based on knowledge of labels
        map_assign = dict(zip(new_vars_, sort_reduced_row_lbls_[0]))

        sort_reduced_rowstr_lbls = [
            ut.repr2(dict(zip(new_vars, lbls)),
                     explicit=True,
                     nobraces=True,
                     strvals=True) for lbls in sort_reduced_row_lbls_
        ]

        top_assignments = list(
            zip(sort_reduced_rowstr_lbls[:3], sort_reduced_values))
        if len(sort_reduced_values) > 3:
            top_assignments += [('other', 1 - sum(sort_reduced_values[:3]))]

        # import utool
        # utool.embed()

        # Compute all marginals
        # probs = infr.query(query_vars, evidence)
        # probs = infr.query(query_vars, evidence)
        # factor_list = probs.values()

        ## Marginalize over non-query, non-evidence
        # irrelevant_vars = ut.setdiff_ordered(joint.variables, list(evidence.keys()) + query_vars)
        # joint.marginalize(irrelevant_vars)
        # joint.normalize()
        # new_rows = joint._row_labels()
        # new_vals = joint.values.ravel()
        # map_vals = new_rows[new_vals.argmax()]
        # map_assign = dict(zip(joint.variables, map_vals))
        # Compute Marginalized MAP joints
        # marginalized_joints = {}
        # for ttype in interest_ttypes:
        #    other_vars = [v for v in joint_factor.scope()
        #                  if model.var2_cpd[v].ttype != ttype]
        #    marginal = joint_factor.marginalize(other_vars, inplace=False)
        #    marginalized_joints[ttype] = marginal
        query_results = {
            'factor_list': factor_list,
            'top_assignments': top_assignments,
            'map_assign': map_assign,
            'marginalized_joints': None,
        }
        return query_results
示例#31
0
def wildbook_signal_annot_name_changes(ibs,
                                       aid_list=None,
                                       wb_target=None,
                                       dryrun=False):
    r"""
    Args:
        aid_list (int):  list of annotation ids(default = None)
        tomcat_dpath (None): (default = None)
        wb_target (None): (default = None)
        dryrun (bool): (default = False)

    CommandLine:
        python -m ibeis wildbook_signal_annot_name_changes:0 --dryrun
        python -m ibeis wildbook_signal_annot_name_changes:1 --dryrun
        python -m ibeis wildbook_signal_annot_name_changes:1
        python -m ibeis wildbook_signal_annot_name_changes:2

    Setup:
        >>> wb_target = None
        >>> dryrun = ut.get_argflag('--dryrun')

    Example:
        >>> # DISABLE_DOCTEST
        >>> from ibeis.control.manual_wildbook_funcs import *  # NOQA
        >>> import ibeis
        >>> ibs = ibeis.opendb(defaultdb='PZ_MTEST')
        >>> #gid_list = ibs.get_valid_gids()[0:10]
        >>> gid_list = ibs.get_valid_gids()[3:5]
        >>> aid_list = ut.flatten(ibs.get_image_aids(gid_list))
        >>> # Test case where some names change, some do not. There are no new names.
        >>> old_nid_list = ibs.get_annot_name_rowids(aid_list)
        >>> new_nid_list = ut.list_roll(old_nid_list, 1)
        >>> ibs.set_annot_name_rowids(aid_list, new_nid_list)
        >>> result = ibs.wildbook_signal_annot_name_changes(aid_list, wb_target, dryrun)
        >>> ibs.set_annot_name_rowids(aid_list, old_nid_list)

    Example:
        >>> # DISABLE_DOCTEST
        >>> from ibeis.control.manual_wildbook_funcs import *  # NOQA
        >>> import ibeis
        >>> ibs = ibeis.opendb(defaultdb='PZ_MTEST')
        >>> #gid_list = ibs.get_valid_gids()[0:10]
        >>> gid_list = ibs.get_valid_gids()[3:5]
        >>> aid_list = ut.flatten(ibs.get_image_aids(gid_list))
        >>> # Test case where all names change to one known name
        >>> #old_nid_list = ibs.get_annot_name_rowids(aid_list)
        >>> #new_nid_list = [old_nid_list[0]] * len(old_nid_list)
        >>> old_nid_list = [1, 2]
        >>> new_nid_list = [1, 1]
        >>> print('old_nid_list = %r' % (old_nid_list,))
        >>> print('new_nid_list = %r' % (new_nid_list,))
        >>> ibs.set_annot_name_rowids(aid_list, new_nid_list)
        >>> result = ibs.wildbook_signal_annot_name_changes(aid_list, wb_target, dryrun)
        >>> # Undo changes here (not undone in wildbook)
        >>> #ibs.set_annot_name_rowids(aid_list, old_nid_list)

    Example:
        >>> # DISABLE_DOCTEST
        >>> from ibeis.control.manual_wildbook_funcs import *  # NOQA
        >>> import ibeis
        >>> ibs = ibeis.opendb(defaultdb='PZ_MTEST')
        >>> gid_list = ibs.get_valid_gids()[3:5]
        >>> aid_list = ut.flatten(ibs.get_image_aids(gid_list))
        >>> old_nid_list = [1, 2]
        >>> ibs.set_annot_name_rowids(aid_list, old_nid_list)
        >>> # Signal what currently exists (should put them back to normal)
        >>> result = ibs.wildbook_signal_annot_name_changes(aid_list, wb_target, dryrun)
    """
    print(
        '[ibs.wildbook_signal_imgsetid_list] signaling annot name changes to wildbook'
    )
    wb_url = ibs.get_wildbook_base_url(wb_target)
    try:
        ibs.assert_ia_available_for_wb(wb_target)
    except Exception:
        pass
    if aid_list is None:
        aid_list = ibs.get_valid_aids(is_known=True)

    annot_uuid_list = ibs.get_annot_uuids(aid_list)
    annot_name_text_list = ibs.get_annot_name_texts(aid_list)
    grouped_uuids = ut.group_items(annot_uuid_list, annot_name_text_list)
    url = wb_url + '/ia'
    payloads = [{
        'resolver': {
            'assignNameToAnnotations': {
                'name': new_name,
                'annotationIds': ut.lmap(str, annot_uuids),
            }
        }
    } for new_name, annot_uuids in grouped_uuids.items()]
    status_list = []
    for json_payload in ut.ProgressIter(payloads, lbl='submitting URL',
                                        freq=1):
        print('[_send] URL=%r with json_payload=%r' % (url, json_payload))
        if dryrun:
            status = False
        else:
            response = requests.post(url, json=json_payload)
            status = response.status_code == 200
            if not status:
                print('Failed to push new names')
                print(response.text)
        status_list.append(status)
    return status_list
示例#32
0
def ggr_random_name_splits():
    """
    CommandLine:
        python -m wbia.viz.viz_graph2 ggr_random_name_splits --show

    Ignore:
        sshfs -o idmap=user lev:/ ~/lev

    Example:
        >>> # DISABLE_DOCTEST
        >>> from wbia.viz.viz_graph2 import *  # NOQA
        >>> ggr_random_name_splits()
    """
    import wbia.guitool as gt

    gt.ensure_qtapp()
    # nid_list = ibs.get_valid_nids(filter_empty=True)
    import wbia

    dbdir = '/media/danger/GGR/GGR-IBEIS'
    dbdir = (dbdir if ut.checkpath(dbdir) else
             ut.truepath('~/lev/media/danger/GGR/GGR-IBEIS'))
    ibs = wbia.opendb(dbdir=dbdir, allow_newdir=False)

    import datetime

    day1 = datetime.date(2016, 1, 30)
    day2 = datetime.date(2016, 1, 31)

    orig_filter_kw = {
        'multiple': None,
        # 'view': ['right'],
        # 'minqual': 'good',
        'is_known': True,
        'min_pername': 2,
    }
    orig_aids = ibs.filter_annots_general(filter_kw=ut.dict_union(
        orig_filter_kw,
        {
            'min_unixtime':
            ut.datetime_to_posixtime(ut.date_to_datetime(day1, 0.0)),
            'max_unixtime':
            ut.datetime_to_posixtime(ut.date_to_datetime(day2, 1.0)),
        },
    ))
    orig_all_annots = ibs.annots(orig_aids)
    orig_unique_nids, orig_grouped_annots_ = orig_all_annots.group(
        orig_all_annots.nids)
    # Ensure we get everything
    orig_grouped_annots = [
        ibs.annots(aids_) for aids_ in ibs.get_name_aids(orig_unique_nids)
    ]

    # pip install quantumrandom
    if False:
        import quantumrandom

        data = quantumrandom.uint16()
        seed = data.sum()
        print('seed = %r' % (seed, ))
        # import Crypto.Random
        # from Crypto import Random
        # quantumrandom.get_data()
        # StrongRandom = Crypto.Random.random.StrongRandom
        # aes.reseed(3340258)
        # chars = [str(chr(x)) for x in data.view(np.uint8)]
        # aes_seed = str('').join(chars)
        # aes = Crypto.Random.Fortuna.FortunaGenerator.AESGenerator()
        # aes.reseed(aes_seed)
        # aes.pseudo_random_data(10)

    orig_rand_idxs = ut.random_indexes(len(orig_grouped_annots), seed=3340258)
    orig_sample_size = 75
    random_annot_groups = ut.take(orig_grouped_annots, orig_rand_idxs)
    orig_annot_sample = random_annot_groups[:orig_sample_size]

    # OOOPS MADE ERROR REDO ----

    filter_kw = {
        'multiple': None,
        'view': ['right'],
        'minqual': 'good',
        'is_known': True,
        'min_pername': 2,
    }
    filter_kw_ = ut.dict_union(
        filter_kw,
        {
            'min_unixtime':
            ut.datetime_to_posixtime(ut.date_to_datetime(day1, 0.0)),
            'max_unixtime':
            ut.datetime_to_posixtime(ut.date_to_datetime(day2, 1.0)),
        },
    )
    refiltered_sample = [
        ibs.filter_annots_general(annot.aids, filter_kw=filter_kw_)
        for annot in orig_annot_sample
    ]
    is_ok = np.array(ut.lmap(len, refiltered_sample)) >= 2
    ok_part_orig_sample = ut.compress(orig_annot_sample, is_ok)
    ok_part_orig_nids = [x.nids[0] for x in ok_part_orig_sample]

    # Now compute real sample
    aids = ibs.filter_annots_general(filter_kw=filter_kw_)
    all_annots = ibs.annots(aids)
    unique_nids, grouped_annots_ = all_annots.group(all_annots.nids)
    grouped_annots = grouped_annots_
    # Ensure we get everything
    # grouped_annots = [ibs.annots(aids_) for aids_ in ibs.get_name_aids(unique_nids)]

    pop = len(grouped_annots)
    pername_list = ut.lmap(len, grouped_annots)
    groups = wbia.annots.AnnotGroups(grouped_annots, ibs)
    match_tags = [ut.unique(ut.flatten(t)) for t in groups.match_tags]
    tag_case_hist = ut.dict_hist(ut.flatten(match_tags))
    print('name_pop = %r' % (pop, ))
    print('Annots per Multiton Name' +
          ut.repr3(ut.get_stats(pername_list, use_median=True)))
    print('Name Tag Hist ' + ut.repr3(tag_case_hist))
    print('Percent Photobomb: %.2f%%' %
          (tag_case_hist['photobomb'] / pop * 100))
    print('Percent Split: %.2f%%' % (tag_case_hist['splitcase'] / pop * 100))

    # Remove the ok part from this sample
    remain_unique_nids = ut.setdiff(unique_nids, ok_part_orig_nids)
    remain_grouped_annots = [
        ibs.annots(aids_) for aids_ in ibs.get_name_aids(remain_unique_nids)
    ]

    sample_size = 75
    import vtool as vt

    vt.calc_sample_from_error_bars(0.05, pop, conf_level=0.95, prior=0.05)

    remain_rand_idxs = ut.random_indexes(len(remain_grouped_annots),
                                         seed=3340258)
    remain_sample_size = sample_size - len(ok_part_orig_nids)
    remain_random_annot_groups = ut.take(remain_grouped_annots,
                                         remain_rand_idxs)
    remain_annot_sample = remain_random_annot_groups[:remain_sample_size]

    annot_sample_nofilter = ok_part_orig_sample + remain_annot_sample
    # Filter out all bad parts
    annot_sample_filter = [
        ibs.annots(ibs.filter_annots_general(annot.aids, filter_kw=filter_kw_))
        for annot in annot_sample_nofilter
    ]
    annot_sample = annot_sample_filter

    win = None
    from wbia.viz import viz_graph2

    for annots in ut.InteractiveIter(annot_sample):
        if win is not None:
            win.close()
        win = viz_graph2.make_qt_graph_interface(ibs,
                                                 aids=annots.aids,
                                                 init_mode='rereview')
        print(win)

    sample_groups = wbia.annots.AnnotGroups(annot_sample, ibs)

    flat_tags = [ut.unique(ut.flatten(t)) for t in sample_groups.match_tags]

    print('Using Split and Photobomb')
    is_positive = ['photobomb' in t or 'splitcase' in t for t in flat_tags]
    num_positive = sum(is_positive)
    vt.calc_error_bars_from_sample(sample_size,
                                   num_positive,
                                   pop,
                                   conf_level=0.95)

    print('Only Photobomb')
    is_positive = ['photobomb' in t for t in flat_tags]
    num_positive = sum(is_positive)
    vt.calc_error_bars_from_sample(sample_size,
                                   num_positive,
                                   pop,
                                   conf_level=0.95)

    print('Only SplitCase')
    is_positive = ['splitcase' in t for t in flat_tags]
    num_positive = sum(is_positive)
    vt.calc_error_bars_from_sample(sample_size,
                                   num_positive,
                                   pop,
                                   conf_level=0.95)
示例#33
0
def wildbook_signal_annot_name_changes(ibs, aid_list=None, wb_target=None,
                                       dryrun=False):
    r"""
    Args:
        aid_list (int):  list of annotation ids(default = None)
        tomcat_dpath (None): (default = None)
        wb_target (None): (default = None)
        dryrun (bool): (default = False)

    CommandLine:
        python -m ibeis wildbook_signal_annot_name_changes:0 --dryrun
        python -m ibeis wildbook_signal_annot_name_changes:1 --dryrun
        python -m ibeis wildbook_signal_annot_name_changes:1
        python -m ibeis wildbook_signal_annot_name_changes:2

    Setup:
        >>> wb_target = None
        >>> dryrun = ut.get_argflag('--dryrun')

    Example:
        >>> # DISABLE_DOCTEST
        >>> from ibeis.control.manual_wildbook_funcs import *  # NOQA
        >>> import ibeis
        >>> ibs = ibeis.opendb(defaultdb='PZ_MTEST')
        >>> #gid_list = ibs.get_valid_gids()[0:10]
        >>> gid_list = ibs.get_valid_gids()[3:5]
        >>> aid_list = ut.flatten(ibs.get_image_aids(gid_list))
        >>> # Test case where some names change, some do not. There are no new names.
        >>> old_nid_list = ibs.get_annot_name_rowids(aid_list)
        >>> new_nid_list = ut.list_roll(old_nid_list, 1)
        >>> ibs.set_annot_name_rowids(aid_list, new_nid_list)
        >>> result = ibs.wildbook_signal_annot_name_changes(aid_list, wb_target, dryrun)
        >>> ibs.set_annot_name_rowids(aid_list, old_nid_list)

    Example:
        >>> # DISABLE_DOCTEST
        >>> from ibeis.control.manual_wildbook_funcs import *  # NOQA
        >>> import ibeis
        >>> ibs = ibeis.opendb(defaultdb='PZ_MTEST')
        >>> #gid_list = ibs.get_valid_gids()[0:10]
        >>> gid_list = ibs.get_valid_gids()[3:5]
        >>> aid_list = ut.flatten(ibs.get_image_aids(gid_list))
        >>> # Test case where all names change to one known name
        >>> #old_nid_list = ibs.get_annot_name_rowids(aid_list)
        >>> #new_nid_list = [old_nid_list[0]] * len(old_nid_list)
        >>> old_nid_list = [1, 2]
        >>> new_nid_list = [1, 1]
        >>> print('old_nid_list = %r' % (old_nid_list,))
        >>> print('new_nid_list = %r' % (new_nid_list,))
        >>> ibs.set_annot_name_rowids(aid_list, new_nid_list)
        >>> result = ibs.wildbook_signal_annot_name_changes(aid_list, wb_target, dryrun)
        >>> # Undo changes here (not undone in wildbook)
        >>> #ibs.set_annot_name_rowids(aid_list, old_nid_list)

    Example:
        >>> # DISABLE_DOCTEST
        >>> from ibeis.control.manual_wildbook_funcs import *  # NOQA
        >>> import ibeis
        >>> ibs = ibeis.opendb(defaultdb='PZ_MTEST')
        >>> gid_list = ibs.get_valid_gids()[3:5]
        >>> aid_list = ut.flatten(ibs.get_image_aids(gid_list))
        >>> old_nid_list = [1, 2]
        >>> ibs.set_annot_name_rowids(aid_list, old_nid_list)
        >>> # Signal what currently exists (should put them back to normal)
        >>> result = ibs.wildbook_signal_annot_name_changes(aid_list, wb_target, dryrun)
    """
    print('[ibs.wildbook_signal_imgsetid_list] signaling annot name changes to wildbook')
    wb_url = ibs.get_wildbook_base_url(wb_target)
    try:
        ibs.assert_ia_available_for_wb(wb_target)
    except Exception:
        pass
    if aid_list is None:
        aid_list = ibs.get_valid_aids(is_known=True)

    annot_uuid_list = ibs.get_annot_uuids(aid_list)
    annot_name_text_list = ibs.get_annot_name_texts(aid_list)
    grouped_uuids = ut.group_items(annot_uuid_list, annot_name_text_list)
    url = wb_url + '/ia'
    payloads = [
        {'resolver': {'assignNameToAnnotations': {
            'name': new_name,
            'annotationIds' : ut.lmap(str, annot_uuids),
        }}}
        for new_name, annot_uuids in grouped_uuids.items()
    ]
    status_list = []
    for json_payload in ut.ProgressIter(payloads, lbl='submitting URL', freq=1):
        print('[_send] URL=%r with json_payload=%r' % (url, json_payload))
        if dryrun:
            status = False
        else:
            response = requests.post(url, json=json_payload)
            status = response.status_code == 200
            if not status:
                print('Failed to push new names')
                print(response.text)
        status_list.append(status)
    return status_list
示例#34
0
 def get_root_uuid(aid_list):
     return ut.lmap(ut.hashable_to_uuid, aid_list)
示例#35
0
def testdata_depc(fname=None):
    """
    Example of local registration
    """

    import dtool
    import vtool as vt
    gpath_list = ut.lmap(ut.grab_test_imgpath,
                         ut.get_valid_test_imgkeys(),
                         verbose=False)

    dummy_root = 'dummy_annot'

    def get_root_uuid(aid_list):
        return ut.lmap(ut.hashable_to_uuid, aid_list)

    # put the test cache in the dtool repo
    dtool_repo = dirname(ut.get_module_dir(dtool))
    cache_dpath = join(dtool_repo, 'DEPCACHE')

    depc = dtool.DependencyCache(
        root_tablename=dummy_root,
        default_fname=fname,
        cache_dpath=cache_dpath,
        get_root_uuid=get_root_uuid,
        #root_asobject=root_asobject,
        use_globals=False)

    @depc.register_preproc(tablename='chip',
                           parents=[dummy_root],
                           colnames=['size', 'chip'],
                           coltypes=[(int, int),
                                     ('extern', vt.imread, vt.imwrite)],
                           configclass=DummyChipConfig)
    def dummy_preproc_chip(depc, annot_rowid_list, config=None):
        """
        TODO: Infer properties from docstr?

        Args:
            depc (dtool.DependencyCache):
            annot_rowid_list (list): list of annot rowids
            config (dict): config dictionary

        Returns:
            tuple : ((int, int), ('extern', vt.imread))
        """
        if config is None:
            config = {}
        # Demonstates using asobject to get input to function as a dictionary
        # of properties
        #for annot in annot_list:
        #print('[preproc] Computing chips of aid=%r' % (aid,))
        print('[preproc] Computing chips')
        for aid in annot_rowid_list:
            #aid = annot['aid']
            #chip_fpath = annot['gpath']
            chip_fpath = gpath_list[aid]
            #w, h = vt.image.open_image_size(chip_fpath)
            chip = vt.imread(chip_fpath)
            size = vt.get_size(chip)
            #size = (w, h)
            print('Dummpy preproc chip yeilds')
            print('* chip_fpath = %r' % (chip_fpath, ))
            print('* size = %r' % (size, ))
            #yield size, chip_fpath
            yield size, chip

    @depc.register_preproc(
        'probchip',
        [dummy_root],
        ['size', 'probchip'],
        coltypes=[(int, int), ('extern', vt.imread, vt.imwrite, '.png')],
        configclass=ProbchipConfig,
    )
    def dummy_preproc_probchip(depc, root_rowids, config):
        print('[preproc] Computing probchip')
        for rowid in root_rowids:
            if config['testerror']:
                if rowid % 2 == 0:
                    # Test error yeilds None on even rowids
                    yield None
                    continue
            rng = np.random.RandomState(rowid)
            probchip = rng.randint(0, 255, size=(64, 64))
            #probchip = np.zeros((64, 64))
            size = (rowid, rowid)
            yield size, probchip

    @depc.register_preproc(
        'keypoint',
        ['chip'],
        ['kpts', 'num'],
        [np.ndarray, int],
        #default_onthefly=True,
        configclass=DummyKptsConfig,
        docstr='Used to store individual chip features (ellipses)',
    )
    def dummy_preproc_kpts(depc, chip_rowids, config=None):
        if config is None:
            config = {}
        print('config = %r' % (config, ))
        adapt_shape = config['adapt_shape']
        print('[preproc] Computing kpts')

        ut.assert_all_not_None(chip_rowids, 'chip_rowids')
        # This is in here to attempt to trigger a failure of the chips dont
        # exist and the feature cache is called.
        chip_fpath_list = depc.get_native('chip',
                                          chip_rowids,
                                          'chip',
                                          read_extern=False)
        print('computing featurse from chip_fpath_list = %r' %
              (chip_fpath_list, ))

        for rowid in chip_rowids:
            if adapt_shape:
                kpts = np.zeros((7 + rowid, 6)) + rowid
            else:
                kpts = np.ones((7 + rowid, 6)) + rowid
            num = len(kpts)
            yield kpts, num

    @depc.register_preproc(
        'descriptor',
        ['keypoint'],
        ['vecs'],
        [np.ndarray],
    )
    def dummy_preproc_vecs(depc, kp_rowid, config=None):
        if config is None:
            config = {}
        print('[preproc] Computing vecs')
        for rowid in kp_rowid:
            yield np.ones((7 + rowid, 8), dtype=np.uint8) + rowid,

    @depc.register_preproc(
        'fgweight',
        ['keypoint', 'probchip'],
        ['fgweight'],
        [np.ndarray],
    )
    def dummy_preproc_fgweight(depc, kpts_rowid, probchip_rowid, config=None):
        if config is None:
            config = {}
        print('[preproc] Computing fgweight')
        for rowid1, rowid2 in zip(kpts_rowid, probchip_rowid):
            yield np.ones(7 + rowid1),

    @depc.register_preproc(tablename='vsmany',
                           colnames='annotmatch',
                           coltypes=DummyAnnotMatch,
                           requestclass=DummyVsManyRequest,
                           configclass=DummyVsManyConfig)
    def vsmany_matching(depc, qaids, config=None):
        """
        CommandLine:
            python -m dtool.base --exec-VsManySimilarityRequest
        """
        print('RUNNING DUMMY VSMANY ALGO')
        daids = config.daids
        qaids = qaids

        sver_on = config.dummy_sver_cfg['sver_on']
        kpts_list = depc.get_property('keypoint', list(qaids))  # NOQA
        #dummy_preproc_kpts
        for qaid in qaids:
            dnid_list = [1, 1, 2, 2]
            unique_nids = [1, 2]
            if sver_on:
                annot_score_list = [.2, .2, .4, .5]
                name_score_list = [.2, .5]
            else:
                annot_score_list = [.3, .3, .6, .9]
                name_score_list = [.1, .7]
            annot_match = DummyAnnotMatch(qaid, daids, dnid_list,
                                          annot_score_list, unique_nids,
                                          name_score_list)
            yield annot_match

    SIMPLE = 0
    if not SIMPLE:

        @depc.register_preproc(tablename='chipmask',
                               parents=[dummy_root],
                               colnames=['size', 'mask'],
                               coltypes=[(int, int),
                                         ('extern', vt.imread, vt.imwrite)])
        def dummy_manual_chipmask(depc, parent_rowids, config=None):
            import vtool as vt
            from plottool import interact_impaint
            mask_dpath = join(depc.cache_dpath, 'ManualChipMask')
            ut.ensuredir(mask_dpath)
            if config is None:
                config = {}
            print('Requesting user defined chip mask')
            for rowid in parent_rowids:
                img = vt.imread(gpath_list[rowid])
                mask = interact_impaint.impaint_mask2(img)
                mask_fpath = join(mask_dpath, 'mask%d.png' % (rowid, ))
                vt.imwrite(mask_fpath, mask)
                w, h = vt.get_size(mask)
                yield (w, h), mask_fpath

        @depc.register_preproc(
            'notch',
            [dummy_root],
            ['notchdata'],
            [np.ndarray],
        )
        def dummy_preproc_notch(depc, parent_rowids, config=None):
            if config is None:
                config = {}
            print('[preproc] Computing notch')
            for rowid in parent_rowids:
                yield np.empty(5 + rowid),

        @depc.register_preproc(
            'spam',
            ['fgweight', 'chip', 'keypoint'],
            ['spam', 'eggs', 'size', 'uuid', 'vector', 'textdata'],
            [
                str, int, (int, int), uuid.UUID, np.ndarray,
                ('extern', ut.readfrom)
            ],
            docstr='I dont like spam',
        )
        def dummy_preproc_spam(depc, *args, **kwargs):
            config = kwargs.get('config', None)
            if config is None:
                config = {}
            print('[preproc] Computing spam')
            ut.writeto('tmp.txt', ut.lorium_ipsum())
            for x in zip(*args):
                size = (42, 21)
                uuid = ut.get_zero_uuid()
                vector = np.ones(3)
                yield ('spam', 3665, size, uuid, vector, 'tmp.txt')

        @depc.register_preproc(
            'nnindexer',
            ['keypoint*'],
            ['flann'],
            [str],  # [('extern', ut.load_data)],
            configclass=DummyIndexerConfig,
        )
        def dummy_preproc_indexer(depc, parent_rowids_list, config=None):
            print('COMPUTING DUMMY INDEXER')
            #assert len(parent_rowids_list) == 1, 'handles only one indexer'
            for parent_rowids in parent_rowids_list:
                yield ('really cool flann object' + str(config.get_cfgstr()) +
                       ' ' + str(parent_rowids), )

        @depc.register_preproc(
            'notchpair',
            ['notch', 'notch'],
            ['pairscore'],
            [int],  # [('extern', ut.load_data)],
            #configclass=DummyIndexerConfig,
        )
        def dummy_notchpair(depc, n1, n2, config=None):
            print('COMPUTING MULTITEST 1 ')
            #assert len(parent_rowids_list) == 1, 'handles only one indexer'
            for nn1, nn2 in zip(n1, n2):
                yield (nn1 + nn2, )

        @depc.register_preproc(
            'multitest',
            [
                'keypoint', 'notch', 'notch', 'fgweight*', 'notchpair*',
                'notchpair*', 'notchpair', 'nnindexer'
            ],
            ['foo'],
            [str],  # [('extern', ut.load_data)],
            #configclass=DummyIndexerConfig,
        )
        def dummy_multitest(depc, *args, **kwargs):
            print('COMPUTING MULTITEST 1 ')
            #assert len(parent_rowids_list) == 1, 'handles only one indexer'
            for x in zip(args):
                yield ('cool multi object' + str(kwargs) + ' ' + str(x), )

        # TEST MULTISET DEPENDENCIES
        @depc.register_preproc(
            'multitest_score',
            ['multitest'],
            ['score'],
            [int],  # [('extern', ut.load_data)],
            #configclass=DummyIndexerConfig,
        )
        def dummy_multitest_score(depc, parent_rowids, config=None):
            print('COMPUTING DEPENDENCY OF MULTITEST 1 ')
            #assert len(parent_rowids_list) == 1, 'handles only one indexer'
            for parent_rowids in zip(parent_rowids):
                yield (parent_rowids, )

        # TEST MULTISET DEPENDENCIES
        @depc.register_preproc(
            'multitest_score_x',
            ['multitest_score', 'multitest_score'],
            ['score'],
            [int],  # [('extern', ut.load_data)],
            #configclass=DummyIndexerConfig,
        )
        def multitest_score_x(depc, *args, **kwargs):
            raise NotImplementedError('hack')

        # REGISTER MATCHING ALGORITHMS

        @depc.register_preproc(
            tablename='neighbs',
            colnames=['qx2_idx', 'qx2_dist'],
            coltypes=[np.ndarray, np.ndarray],
            parents=['keypoint', 'fgweight', 'nnindexer', 'nnindexer'])
        def neighbs(depc, *args, **kwargs):
            """
            CommandLine:
                python -m dtool.base --exec-VsManySimilarityRequest
            """
            #dummy_preproc_kpts
            for qaid in zip(args):
                yield np.array([qaid]), np.array([qaid])

        @depc.register_preproc(tablename='neighbs_score',
                               colnames=['qx2_dist'],
                               coltypes=[np.ndarray],
                               parents=['neighbs'])
        def neighbs_score(depc, *args, **kwargs):
            """
            CommandLine:
                python -m dtool.base --exec-VsManySimilarityRequest
            """
            raise NotImplementedError('hack')

        @depc.register_preproc('vsone', [dummy_root, dummy_root],
                               ['score', 'match_obj', 'fm'],
                               [float, DummyVsOneMatch, np.ndarray],
                               requestclass=DummyVsOneRequest,
                               configclass=DummyVsOneConfig,
                               chunksize=2)
        def compute_vsone_matching(depc, qaids, daids, config):
            """
            CommandLine:
                python -m dtool.base --exec-VsOneSimilarityRequest
            """
            print('RUNNING DUMMY VSONE ALGO')
            for qaid, daid in zip(qaids, daids):
                match = DummyVsOneMatch()
                match.qaid = qaid
                match.daid = daid
                match.fm = np.array([[1, 2], [3, 4]])
                score = match.score = qaid + daid
                yield (score, match, match.fm)

    # table = depc['spam']
    # print(ut.repr2(table.get_addtable_kw(), nl=2))
    depc.initialize()
    # table.print_schemadef()
    # print(table.db.get_schema_current_autogeneration_str())
    return depc
示例#36
0
def get_default_cell_template_list(ibs):
    """
    Defines the order of ipython notebook cells
    """

    cells = notebook_cells

    noexample = not ut.get_argflag('--examples')
    asreport = ut.get_argflag('--asreport')
    withtags = ut.get_argflag('--withtags')

    cell_template_list = []

    info_cells = [
        cells.pipe_config_info,
        cells.annot_config_info,
        # cells.per_encounter_stats,
        cells.timestamp_distribution,
    ]

    dev_analysis = [
        cells.config_overlap,
        #cells.dbsize_expt,
        # None if ibs.get_dbname() == 'humpbacks' else cells.feat_score_sep,
        cells.all_annot_scoresep,
        cells.success_annot_scoresep,
    ]

    cell_template_list += [
        cells.introduction if asreport else None,
        cells.nb_init,
        cells.db_init,
        None if ibs.get_dbname() != 'humpbacks' else cells.fluke_select,
    ]

    if not asreport:
        cell_template_list += info_cells

    if not noexample:
        cell_template_list += [
            cells.example_annotations,
            cells.example_names,
        ]

    cell_template_list += [
        cells.per_annotation_accuracy,
        cells.per_name_accuracy,
        cells.easy_success_cases,
        cells.hard_success_cases,
        cells.failure_type1_cases,
        cells.failure_type2_cases,
        cells.total_failure_cases,
        cells.timedelta_distribution,
    ]

    if withtags:
        cell_template_list += [
            cells.investigate_specific_case,
            cells.view_intereseting_tags,
        ]

    if asreport:
        # Append our debug stuff at the bottom
        cell_template_list += [cells.IGNOREAFTER]
        cell_template_list += info_cells

    cell_template_list += dev_analysis

    cell_template_list += [
        cells.config_disagree_cases,
    ]

    cell_template_list = ut.filter_Nones(cell_template_list)

    cell_template_list = ut.lmap(ut.normalize_cells, cell_template_list)

    if not asreport:
        # Remove all of the extra fluff
        cell_template_list = [(header.split('\n')[0], code, None)
                              for (header, code, footer) in cell_template_list]

    return cell_template_list
示例#37
0
def update_bindings():
    r"""
    Returns:
        dict: matchtups

    CommandLine:
        python ~/local/build_scripts/flannscripts/autogen_bindings.py --exec-update_bindings
        utprof.py ~/local/build_scripts/flannscripts/autogen_bindings.py --exec-update_bindings

    Example:
        >>> # DISABLE_DOCTEST
        >>> from autogen_bindings import *  # NOQA
        >>> import sys
        >>> import utool as ut
        >>> sys.path.append(ut.truepath('~/local/build_scripts/flannscripts'))
        >>> matchtups = update_bindings()
        >>> result = ('matchtups = %s' % (ut.repr2(matchtups),))
        >>> print(result)
        >>> ut.quit_if_noshow()
        >>> import plottool as pt
        >>> ut.show_if_requested()
    """
    from os.path import basename
    import difflib
    import numpy as np
    import re
    binding_names = [
        'build_index',
        'used_memory',
        'add_points',
        'remove_point',

        'compute_cluster_centers',
        'load_index',
        'save_index',
        'find_nearest_neighbors',

        'radius_search',
        'remove_points',
        'free_index',
        'find_nearest_neighbors_index',

        # 'size',
        # 'veclen',
        # 'get_point',
        # 'flann_get_distance_order',
        # 'flann_get_distance_type',
        # 'flann_log_verbosity',

        # 'clean_removed_points',
    ]

    _places = [
        '~/code/flann/src/cpp/flann/flann.cpp',
        '~/code/flann/src/cpp/flann/flann.h',
        '~/code/flann/src/python/pyflann/flann_ctypes.py',
        '~/code/flann/src/python/pyflann/index.py',
    ]

    eof_sentinals = {
        # 'flann_ctypes.py': '# END DEFINE BINDINGS',
        'flann_ctypes.py': 'def ensure_2d_array(arr',
        # 'flann.h': '// END DEFINE BINDINGS',
        'flann.h': '#ifdef __cplusplus',
        'flann.cpp': None,
        'index.py': None,
    }
    block_sentinals = {
        'flann.h': re.escape('/**'),
        'flann.cpp': 'template *<typename Distance>',
        # 'flann_ctypes.py': '\n',
        'flann_ctypes.py': 'flann\.[a-z_.]* =',
        # 'index.py': '    def .*',
        'index.py': '    [^ ].*',
    }
    places = {basename(fpath): fpath for fpath in ut.lmap(ut.truepath, _places)}
    text_dict = ut.map_dict_vals(ut.readfrom, places)
    lines_dict = {key: val.split('\n') for key, val in text_dict.items()}
    orig_texts = text_dict.copy()  # NOQA
    binding_defs = {}
    named_blocks  = {}

    print('binding_names = %r' % (binding_names,))
    for binding_name in binding_names:
        blocks, defs = autogen_parts(binding_name)
        binding_defs[binding_name] = defs
        named_blocks[binding_name] = blocks

    for binding_name in ut.ProgIter(binding_names):
        ut.colorprint('+--- GENERATE BINDING %s -----' % (binding_name,), 'yellow')
        blocks_dict = named_blocks[binding_name]
        for key in places.keys():
            ut.colorprint('---- generating %s for %s -----' % (binding_name, key,), 'yellow')
            # key = 'flann_ctypes.py'
            # print(text_dict[key])
            old_text = text_dict[key]
            line_list = lines_dict[key]
            #text = old_text
            block = blocks_dict[key]

            debug = ut.get_argflag('--debug')
            # debug = True
            # if debug:
            #     print(ut.highlight_code(block, splitext(key)[1]))

            # Find a place in the code that already exists

            searchblock = block
            if key.endswith('.cpp') or key.endswith('.h'):
                searchblock = re.sub(ut.REGEX_C_COMMENT, '', searchblock,
                                     flags=re.MULTILINE | re.DOTALL)
            searchblock = '\n'.join(searchblock.splitlines()[0:3])

            # @ut.cached_func(verbose=False)
            def cached_match(old_text, searchblock):
                def isjunk(x):
                    return False
                    return x in ' \t,*()'
                def isjunk2(x):
                    return x in ' \t,*()'
                # Not sure why the first one just doesnt find it
                # isjunk = None
                sm = difflib.SequenceMatcher(isjunk, old_text, searchblock,
                                             autojunk=False)
                sm0 = difflib.SequenceMatcher(isjunk, old_text, searchblock,
                                              autojunk=True)
                sm1 = difflib.SequenceMatcher(isjunk2, old_text, searchblock,
                                              autojunk=False)
                sm2 = difflib.SequenceMatcher(isjunk2, old_text, searchblock,
                                              autojunk=True)
                matchtups = (sm.get_matching_blocks() +
                             sm0.get_matching_blocks() +
                             sm1.get_matching_blocks() +
                             sm2.get_matching_blocks())
                return matchtups
            matchtups = cached_match(old_text, searchblock)
            # Find a reasonable match in matchtups

            found = False
            if debug:
                # print('searchblock =\n%s' % (searchblock,))
                print('searchblock = %r' % (searchblock,))
            for (a, b, size) in matchtups:
                matchtext = old_text[a: a + size]
                pybind = binding_defs[binding_name]['py_binding_name']
                if re.search(binding_name + '\\b', matchtext) or re.search(pybind + '\\b', matchtext):
                    found = True
                    pos = a + size
                    if debug:
                        print('MATCHING TEXT')
                        print(matchtext)
                    break
                else:
                    if debug and 0:
                        print('Not matching')
                        print('matchtext = %r' % (matchtext,))
                        matchtext2 = old_text[a - 10: a + size + 20]
                        print('matchtext2 = %r' % (matchtext2,))

            if found:
                linelens = np.array(ut.lmap(len, line_list)) + 1
                sumlen = np.cumsum(linelens)
                row = np.where(sumlen < pos)[0][-1] + 1
                #print(line_list[row])
                # Search for extents of the block to overwrite
                block_sentinal = block_sentinals[key]
                row1 = ut.find_block_end(row, line_list, block_sentinal, -1) - 1
                row2 = ut.find_block_end(row + 1, line_list, block_sentinal, +1)
                eof_sentinal = eof_sentinals[key]
                if eof_sentinal is not None:
                    print('eof_sentinal = %r' % (eof_sentinal,))
                    row2 = min([count for count, line in enumerate(line_list) if line.startswith(eof_sentinal)][-1], row2)
                nr = len((block + '\n\n').splitlines())
                new_line_list = ut.insert_block_between_lines(
                    block + '\n', row1, row2, line_list)
                rtext1 = '\n'.join(line_list[row1:row2])
                rtext2 = '\n'.join(new_line_list[row1:row1 + nr])
                if debug:
                    print('-----')
                    ut.colorprint('FOUND AND REPLACING %s' % (binding_name,), 'yellow')
                    print(ut.highlight_code(rtext1))
                if debug:
                    print('-----')
                    ut.colorprint('FOUND AND REPLACED WITH %s' % (binding_name,), 'yellow')
                    print(ut.highlight_code(rtext2))
                if not ut.get_argflag('--diff') and not debug:
                    print(ut.color_diff_text(ut.difftext(rtext1, rtext2, num_context_lines=7, ignore_whitespace=True)))
            else:
                # Append to end of the file
                eof_sentinal = eof_sentinals[key]
                if eof_sentinal is None:
                    row2 = len(line_list) - 1
                else:
                    row2_choice = [count for count, line in enumerate(line_list)
                                   if line.startswith(eof_sentinal)]
                    if len(row2_choice) == 0:
                        row2 = len(line_list) - 1
                        assert False
                    else:
                        row2 = row2_choice[-1] - 1

                # row1 = row2 - 1
                # row2 = row2 - 1
                row1 = row2

                new_line_list = ut.insert_block_between_lines(
                    block + '\n', row1, row2, line_list)
                # block + '\n\n\n', row1, row2, line_list)

                rtext1 = '\n'.join(line_list[row1:row2])
                nr = len((block + '\n\n').splitlines())
                rtext2 = '\n'.join(new_line_list[row1:row1 + nr])

                if debug:
                    print('-----')
                    ut.colorprint('NOT FOUND AND REPLACING %s' % (binding_name,), 'yellow')
                    print(ut.highlight_code(rtext1))
                if debug:
                    print('-----')
                    ut.colorprint('NOT FOUND AND REPLACED WITH %s' % (binding_name,), 'yellow')
                    print(ut.highlight_code(rtext2))

                if not ut.get_argflag('--diff') and not debug:
                    print(ut.color_diff_text(ut.difftext(rtext1, rtext2, num_context_lines=7, ignore_whitespace=True)))
            text_dict[key] = '\n'.join(new_line_list)
            lines_dict[key] = new_line_list
        ut.colorprint('L___  GENERATED BINDING %s ___' % (binding_name,), 'yellow')

    for key in places:
        new_text = '\n'.join(lines_dict[key])
        #ut.writeto(ut.augpath(places[key], '.new'), new_text)
        ut.writeto(ut.augpath(places[key]), new_text)

    for key in places:
        if ut.get_argflag('--diff'):
            difftext = ut.get_textdiff(orig_texts[key], new_text,
                                       num_context_lines=7, ignore_whitespace=True)
            difftext = ut.color_diff_text(difftext)
            print(difftext)
示例#38
0
 def get_root_uuid(aid_list):
     return ut.lmap(ut.hashable_to_uuid, aid_list)
示例#39
0
 def __nice__(sample):
     denc_pername = ut.lmap(len, sample.dname_encs)
     n_denc_pername = np.mean(denc_pername)
     return 'nQaids={}, nDEncPerName={}, nConfu={}'.format(
         len(sample.qaids), n_denc_pername, len(sample.confusor_pool))
示例#40
0
        'git branch --set-upstream-to=origin/{upstream_branch} {upstream_branch}'
        .format(**locals()))

upstream_push = GET_ARGVAL('--upstream-push', type_=str, default=None)
if upstream_push is not None:
    ibeis_rman.issue(
        'git push --set-upstream origin {upstream_push}'.format(**locals()))

if GET_ARGFLAG('--test'):
    failures = []
    for repo_dpath in ibeis_rman.repo_dirs:
        # ut.getp_
        mod_dpaths = ut.get_submodules_from_dpath(repo_dpath,
                                                  recursive=False,
                                                  only_packages=True)
        modname_list = ut.lmap(ut.get_modname_from_modpath, mod_dpaths)
        print('Checking modules = %r' % (modname_list, ))

        for modname in modname_list:
            try:
                ut.import_modname(modname)
                print(modname + ' success')
            except ImportError as ex:
                failures += [modname]
                print(modname + ' failure')

    print('failures = %s' % (ut.repr3(failures), ))
    # print('repo_dpath = %r' % (repo_dpath,))
    # print('modules = %r' % (modules,))
    # import ibeis
    # print('found ibeis=%r' % (ibeis,))
示例#41
0
    def expand(sample, denc_per_name=[1], extra_dbsize_fracs=[0]):
        # Vary the number of database encounters in each sample
        target_daids_list = []
        target_info_list_ = []
        for num in denc_per_name:
            dname_encs_ = ut.take_column(sample.dname_encs, slice(0, num))
            dnames_ = ut.lmap(ut.flatten, dname_encs_)
            daids_ = ut.total_flatten(dname_encs_)
            target_daids_list.append(daids_)
            name_lens = ut.lmap(len, dnames_)
            dpername = name_lens[0] if ut.allsame(name_lens) else np.mean(
                name_lens)
            target_info_list_.append(
                ut.odict([
                    ('qsize', len(sample.qaids)),
                    ('t_n_names', len(dname_encs_)),
                    ('t_dpername', dpername),
                    ('t_denc_pername', num),
                    ('t_dsize', len(daids_)),
                ]))

        # Append confusors to maintain a constant dbsize in each base sample
        dbsize_list = ut.lmap(len, target_daids_list)
        max_dsize = max(dbsize_list)
        n_need = max_dsize - min(dbsize_list)
        n_extra_avail = len(sample.confusor_pool) - n_need
        assert len(sample.confusor_pool) > n_need, 'not enough confusors'
        padded_daids_list = []
        padded_info_list_ = []
        for daids_, info_ in zip(target_daids_list, target_info_list_):
            num_take = max_dsize - len(daids_)
            pad_aids = sample.confusor_pool[:num_take]
            new_aids = daids_ + pad_aids
            info_ = info_.copy()
            info_['n_pad'] = len(pad_aids)
            info_['pad_dsize'] = len(new_aids)
            padded_info_list_.append(info_)
            padded_daids_list.append(new_aids)

        # Vary the dbsize by appending extra confusors
        if extra_dbsize_fracs is None:
            extra_dbsize_fracs = [1.0]
        extra_fracs = np.array(extra_dbsize_fracs)
        n_extra_list = np.unique(extra_fracs * n_extra_avail).astype(np.int)
        daids_list = []
        info_list = []
        for n in n_extra_list:
            for daids_, info_ in zip(padded_daids_list, padded_info_list_):
                extra_aids = sample.confusor_pool[len(sample.confusor_pool) -
                                                  n:]
                daids = sorted(daids_ + extra_aids)
                daids_list.append(daids)
                info = info_.copy()
                info['n_extra'] = len(extra_aids)
                info['dsize'] = len(daids)
                info_list.append(info)

        import pandas as pd

        verbose = 0
        if verbose:
            logger.info(pd.DataFrame.from_records(info_list))
            logger.info('#qaids = %r' % (len(sample.qaids), ))
            logger.info('num_need = %r' % (n_need, ))
            logger.info('max_dsize = %r' % (max_dsize, ))
        return sample.qaids, daids_list, info_list
示例#42
0
def run_asmk_script():
    with ut.embed_on_exception_context:  # NOQA
        """
    >>> from wbia.algo.smk.script_smk import *
    """

  # NOQA

        # ==============================================
        # PREPROCESSING CONFIGURATION
        # ==============================================
        config = {
            # 'data_year': 2013,
            'data_year': None,
            'dtype': 'float32',
            # 'root_sift': True,
            'root_sift': False,
            # 'centering': True,
            'centering': False,
            'num_words': 2**16,
            # 'num_words': 1E6
            # 'num_words': 8000,
            'kmeans_impl': 'sklearn.mini',
            'extern_words': False,
            'extern_assign': False,
            'assign_algo': 'kdtree',
            'checks': 1024,
            'int_rvec': True,
            'only_xy': False,
        }
        # Define which params are relevant for which operations
        relevance = {}
        relevance['feats'] = ['dtype', 'root_sift', 'centering', 'data_year']
        relevance['words'] = relevance['feats'] + [
            'num_words',
            'extern_words',
            'kmeans_impl',
        ]
        relevance['assign'] = relevance['words'] + [
            'checks',
            'extern_assign',
            'assign_algo',
        ]
        # relevance['ydata'] = relevance['assign'] + ['int_rvec']
        # relevance['xdata'] = relevance['assign'] + ['only_xy', 'int_rvec']

        nAssign = 1

        class SMKCacher(ut.Cacher):
            def __init__(self, fname, ext='.cPkl'):
                relevant_params = relevance[fname]
                relevant_cfg = ut.dict_subset(config, relevant_params)
                cfgstr = ut.get_cfg_lbl(relevant_cfg)
                dbdir = ut.truepath('/raid/work/Oxford/')
                super(SMKCacher, self).__init__(fname,
                                                cfgstr,
                                                cache_dir=dbdir,
                                                ext=ext)

        # ==============================================
        # LOAD DATASET, EXTRACT AND POSTPROCESS FEATURES
        # ==============================================
        if config['data_year'] == 2007:
            data = load_oxford_2007()
        elif config['data_year'] == 2013:
            data = load_oxford_2013()
        elif config['data_year'] is None:
            data = load_oxford_wbia()

        offset_list = data['offset_list']
        all_kpts = data['all_kpts']
        raw_vecs = data['all_vecs']
        query_uri_order = data['query_uri_order']
        data_uri_order = data['data_uri_order']
        # del data

        # ================
        # PRE-PROCESS
        # ================
        import vtool as vt

        # Alias names to avoid errors in interactive sessions
        proc_vecs = raw_vecs
        del raw_vecs

        feats_cacher = SMKCacher('feats', ext='.npy')
        all_vecs = feats_cacher.tryload()
        if all_vecs is None:
            if config['dtype'] == 'float32':
                logger.info('Converting vecs to float32')
                proc_vecs = proc_vecs.astype(np.float32)
            else:
                proc_vecs = proc_vecs
                raise NotImplementedError('other dtype')

            if config['root_sift']:
                with ut.Timer('Apply root sift'):
                    np.sqrt(proc_vecs, out=proc_vecs)
                    vt.normalize(proc_vecs, ord=2, axis=1, out=proc_vecs)

            if config['centering']:
                with ut.Timer('Apply centering'):
                    mean_vec = np.mean(proc_vecs, axis=0)
                    # Center and then re-normalize
                    np.subtract(proc_vecs, mean_vec[None, :], out=proc_vecs)
                    vt.normalize(proc_vecs, ord=2, axis=1, out=proc_vecs)

            if config['dtype'] == 'int8':
                smk_funcs

            all_vecs = proc_vecs
            feats_cacher.save(all_vecs)
        del proc_vecs

        # =====================================
        # BUILD VISUAL VOCABULARY
        # =====================================
        if config['extern_words']:
            words = data['words']
            assert config['num_words'] is None or len(
                words) == config['num_words']
        else:
            word_cacher = SMKCacher('words')
            words = word_cacher.tryload()
            if words is None:
                with ut.embed_on_exception_context:
                    if config['kmeans_impl'] == 'sklearn.mini':
                        import sklearn.cluster

                        rng = np.random.RandomState(13421421)
                        # init_size = int(config['num_words'] * 8)
                        init_size = int(config['num_words'] * 4)
                        # converged after 26043 iterations
                        clusterer = sklearn.cluster.MiniBatchKMeans(
                            config['num_words'],
                            init_size=init_size,
                            batch_size=1000,
                            compute_labels=False,
                            max_iter=20,
                            random_state=rng,
                            n_init=1,
                            verbose=1,
                        )
                        clusterer.fit(all_vecs)
                        words = clusterer.cluster_centers_
                    elif config['kmeans_impl'] == 'yael':
                        from yael import ynumpy

                        centroids, qerr, dis, assign, nassign = ynumpy.kmeans(
                            all_vecs,
                            config['num_words'],
                            init='kmeans++',
                            verbose=True,
                            output='all',
                        )
                        words = centroids
                    word_cacher.save(words)

        # =====================================
        # ASSIGN EACH VECTOR TO ITS NEAREST WORD
        # =====================================
        if config['extern_assign']:
            assert config[
                'extern_words'], 'need extern cluster to extern assign'
            idx_to_wxs = vt.atleast_nd(data['idx_to_wx'], 2)
            idx_to_maws = np.ones(idx_to_wxs.shape, dtype=np.float32)
            idx_to_wxs = np.ma.array(idx_to_wxs)
            idx_to_maws = np.ma.array(idx_to_maws)
        else:
            from wbia.algo.smk import vocab_indexer

            vocab = vocab_indexer.VisualVocab(words)
            dassign_cacher = SMKCacher('assign')
            assign_tup = dassign_cacher.tryload()
            if assign_tup is None:
                vocab.flann_params['algorithm'] = config['assign_algo']
                vocab.build()
                # Takes 12 minutes to assign jegous vecs to 2**16 vocab
                with ut.Timer('assign vocab neighbors'):
                    _idx_to_wx, _idx_to_wdist = vocab.nn_index(
                        all_vecs, nAssign, checks=config['checks'])
                    if nAssign > 1:
                        idx_to_wxs, idx_to_maws = smk_funcs.weight_multi_assigns(
                            _idx_to_wx,
                            _idx_to_wdist,
                            massign_alpha=1.2,
                            massign_sigma=80.0,
                            massign_equal_weights=True,
                        )
                    else:
                        idx_to_wxs = np.ma.masked_array(_idx_to_wx,
                                                        fill_value=-1)
                        idx_to_maws = np.ma.ones(idx_to_wxs.shape,
                                                 fill_value=-1,
                                                 dtype=np.float32)
                        idx_to_maws.mask = idx_to_wxs.mask
                assign_tup = (idx_to_wxs, idx_to_maws)
                dassign_cacher.save(assign_tup)

        idx_to_wxs, idx_to_maws = assign_tup

        # Breakup vectors, keypoints, and word assignments by annotation
        wx_lists = [
            idx_to_wxs[left:right] for left, right in ut.itertwo(offset_list)
        ]
        maw_lists = [
            idx_to_maws[left:right] for left, right in ut.itertwo(offset_list)
        ]
        vecs_list = [
            all_vecs[left:right] for left, right in ut.itertwo(offset_list)
        ]
        kpts_list = [
            all_kpts[left:right] for left, right in ut.itertwo(offset_list)
        ]

        # =======================
        # FIND QUERY SUBREGIONS
        # =======================

        ibs, query_annots, data_annots, qx_to_dx = load_ordered_annots(
            data_uri_order, query_uri_order)
        daids = data_annots.aids
        qaids = query_annots.aids

        query_super_kpts = ut.take(kpts_list, qx_to_dx)
        query_super_vecs = ut.take(vecs_list, qx_to_dx)
        query_super_wxs = ut.take(wx_lists, qx_to_dx)
        query_super_maws = ut.take(maw_lists, qx_to_dx)
        # Mark which keypoints are within the bbox of the query
        query_flags_list = []
        only_xy = config['only_xy']
        for kpts_, bbox in zip(query_super_kpts, query_annots.bboxes):
            flags = kpts_inside_bbox(kpts_, bbox, only_xy=only_xy)
            query_flags_list.append(flags)

        logger.info('Queries are crops of existing database images.')
        logger.info('Looking at average percents')
        percent_list = [
            flags_.sum() / flags_.shape[0] for flags_ in query_flags_list
        ]
        percent_stats = ut.get_stats(percent_list)
        logger.info('percent_stats = %s' % (ut.repr4(percent_stats), ))

        import vtool as vt

        query_kpts = vt.zipcompress(query_super_kpts, query_flags_list, axis=0)
        query_vecs = vt.zipcompress(query_super_vecs, query_flags_list, axis=0)
        query_wxs = vt.zipcompress(query_super_wxs, query_flags_list, axis=0)
        query_maws = vt.zipcompress(query_super_maws, query_flags_list, axis=0)

        # =======================
        # CONSTRUCT QUERY / DATABASE REPR
        # =======================

        # int_rvec = not config['dtype'].startswith('float')
        int_rvec = config['int_rvec']

        X_list = []
        _prog = ut.ProgPartial(length=len(qaids),
                               label='new X',
                               bs=True,
                               adjust=True)
        for aid, fx_to_wxs, fx_to_maws in _prog(
                zip(qaids, query_wxs, query_maws)):
            X = new_external_annot(aid, fx_to_wxs, fx_to_maws, int_rvec)
            X_list.append(X)

        # ydata_cacher = SMKCacher('ydata')
        # Y_list = ydata_cacher.tryload()
        # if Y_list is None:
        Y_list = []
        _prog = ut.ProgPartial(length=len(daids),
                               label='new Y',
                               bs=True,
                               adjust=True)
        for aid, fx_to_wxs, fx_to_maws in _prog(zip(daids, wx_lists,
                                                    maw_lists)):
            Y = new_external_annot(aid, fx_to_wxs, fx_to_maws, int_rvec)
            Y_list.append(Y)
        # ydata_cacher.save(Y_list)

        # ======================
        # Add in some groundtruth

        logger.info('Add in some groundtruth')
        for Y, nid in zip(Y_list, ibs.get_annot_nids(daids)):
            Y.nid = nid

        for X, nid in zip(X_list, ibs.get_annot_nids(qaids)):
            X.nid = nid

        for Y, qual in zip(Y_list, ibs.get_annot_quality_texts(daids)):
            Y.qual = qual

        # ======================
        # Add in other properties
        for Y, vecs, kpts in zip(Y_list, vecs_list, kpts_list):
            Y.vecs = vecs
            Y.kpts = kpts

        imgdir = ut.truepath('/raid/work/Oxford/oxbuild_images')
        for Y, imgid in zip(Y_list, data_uri_order):
            gpath = ut.unixjoin(imgdir, imgid + '.jpg')
            Y.gpath = gpath

        for X, vecs, kpts in zip(X_list, query_vecs, query_kpts):
            X.kpts = kpts
            X.vecs = vecs

        # ======================
        logger.info('Building inverted list')
        daids = [Y.aid for Y in Y_list]
        # wx_list = sorted(ut.list_union(*[Y.wx_list for Y in Y_list]))
        wx_list = sorted(set.union(*[Y.wx_set for Y in Y_list]))
        assert daids == data_annots.aids
        assert len(wx_list) <= config['num_words']

        wx_to_aids = smk_funcs.invert_lists(daids, [Y.wx_list for Y in Y_list],
                                            all_wxs=wx_list)

        # Compute IDF weights
        logger.info('Compute IDF weights')
        ndocs_total = len(daids)
        # Use only the unique number of words
        ndocs_per_word = np.array([len(set(wx_to_aids[wx])) for wx in wx_list])
        logger.info('ndocs_perword stats: ' +
                    ut.repr4(ut.get_stats(ndocs_per_word)))
        idf_per_word = smk_funcs.inv_doc_freq(ndocs_total, ndocs_per_word)
        wx_to_weight = dict(zip(wx_list, idf_per_word))
        logger.info('idf stats: ' +
                    ut.repr4(ut.get_stats(wx_to_weight.values())))

        # Filter junk
        Y_list_ = [Y for Y in Y_list if Y.qual != 'junk']

        # =======================
        # CHOOSE QUERY KERNEL
        # =======================
        params = {
            'asmk': dict(alpha=3.0, thresh=0.0),
            'bow': dict(),
            'bow2': dict(),
        }
        # method = 'bow'
        method = 'bow2'
        method = 'asmk'
        smk = SMK(wx_to_weight, method=method, **params[method])

        # Specific info for the type of query
        if method == 'asmk':
            # Make residual vectors
            if True:
                # The stacked way is 50x faster
                # TODO: extend for multi-assignment and record fxs
                flat_query_vecs = np.vstack(query_vecs)
                flat_query_wxs = np.vstack(query_wxs)
                flat_query_offsets = np.array(
                    [0] + ut.cumsum(ut.lmap(len, query_wxs)))

                flat_wxs_assign = flat_query_wxs
                flat_offsets = flat_query_offsets
                flat_vecs = flat_query_vecs
                tup = smk_funcs.compute_stacked_agg_rvecs(
                    words, flat_wxs_assign, flat_vecs, flat_offsets)
                all_agg_vecs, all_error_flags, agg_offset_list = tup
                if int_rvec:
                    all_agg_vecs = smk_funcs.cast_residual_integer(
                        all_agg_vecs)
                agg_rvecs_list = [
                    all_agg_vecs[left:right]
                    for left, right in ut.itertwo(agg_offset_list)
                ]
                agg_flags_list = [
                    all_error_flags[left:right]
                    for left, right in ut.itertwo(agg_offset_list)
                ]

                for X, agg_rvecs, agg_flags in zip(X_list, agg_rvecs_list,
                                                   agg_flags_list):
                    X.agg_rvecs = agg_rvecs
                    X.agg_flags = agg_flags[:, None]

                flat_wxs_assign = idx_to_wxs
                flat_offsets = offset_list
                flat_vecs = all_vecs
                tup = smk_funcs.compute_stacked_agg_rvecs(
                    words, flat_wxs_assign, flat_vecs, flat_offsets)
                all_agg_vecs, all_error_flags, agg_offset_list = tup
                if int_rvec:
                    all_agg_vecs = smk_funcs.cast_residual_integer(
                        all_agg_vecs)

                agg_rvecs_list = [
                    all_agg_vecs[left:right]
                    for left, right in ut.itertwo(agg_offset_list)
                ]
                agg_flags_list = [
                    all_error_flags[left:right]
                    for left, right in ut.itertwo(agg_offset_list)
                ]

                for Y, agg_rvecs, agg_flags in zip(Y_list, agg_rvecs_list,
                                                   agg_flags_list):
                    Y.agg_rvecs = agg_rvecs
                    Y.agg_flags = agg_flags[:, None]
            else:
                # This non-stacked way is about 500x slower
                _prog = ut.ProgPartial(label='agg Y rvecs',
                                       bs=True,
                                       adjust=True)
                for Y in _prog(Y_list_):
                    make_agg_vecs(Y, words, Y.vecs)

                _prog = ut.ProgPartial(label='agg X rvecs',
                                       bs=True,
                                       adjust=True)
                for X in _prog(X_list):
                    make_agg_vecs(X, words, X.vecs)
        elif method == 'bow2':
            # Hack for orig tf-idf bow vector
            nwords = len(words)
            for X in ut.ProgIter(X_list, label='make bow vector'):
                ensure_tf(X)
                bow_vector(X, wx_to_weight, nwords)

            for Y in ut.ProgIter(Y_list_, label='make bow vector'):
                ensure_tf(Y)
                bow_vector(Y, wx_to_weight, nwords)

        if method != 'bow2':
            for X in ut.ProgIter(X_list, 'compute X gamma'):
                X.gamma = smk.gamma(X)
            for Y in ut.ProgIter(Y_list_, 'compute Y gamma'):
                Y.gamma = smk.gamma(Y)

        # Execute matches (could go faster by enumerating candidates)
        scores_list = []
        for X in ut.ProgIter(X_list, label='query %s' % (smk, )):
            scores = [smk.kernel(X, Y) for Y in Y_list_]
            scores = np.array(scores)
            scores = np.nan_to_num(scores)
            scores_list.append(scores)

        import sklearn.metrics

        avep_list = []
        _iter = list(zip(scores_list, X_list))
        _iter = ut.ProgIter(_iter, label='evaluate %s' % (smk, ))
        for scores, X in _iter:
            truth = [X.nid == Y.nid for Y in Y_list_]
            avep = sklearn.metrics.average_precision_score(truth, scores)
            avep_list.append(avep)
        avep_list = np.array(avep_list)
        mAP = np.mean(avep_list)
        logger.info('mAP  = %r' % (mAP, ))
示例#43
0
def testdata_depc(fname=None):
    import vtool as vt
    gpath_list = ut.lmap(ut.grab_test_imgpath, ut.get_valid_test_imgkeys(), verbose=False)

    dummy_root = 'dummy_annot'

    def root_asobject(aid):
        """ Convinience for writing preproc funcs """
        gpath = gpath_list[aid]
        root_obj = ut.LazyDict({
            'aid': aid,
            'gpath': gpath,
            'image': lambda: vt.imread(gpath)
        })
        return root_obj

    depc = DependencyCache(root_tablename=dummy_root, default_fname=fname,
                           root_asobject=root_asobject, use_globals=False)
    _register_preproc = depc.register_preproc

    @_register_preproc(
        tablename='chipmask', parents=[dummy_root], colnames=['size', 'mask'],
        coltypes=[(int, int), ('extern', vt.imread, vt.imwrite)])
    def dummy_manual_chipmask(depc, parent_rowids, config=None):
        import vtool as vt
        from plottool import interact_impaint
        mask_dpath = ut.unixjoin(depc.cache_dpath, 'ManualChipMask')
        ut.ensuredir(mask_dpath)
        if config is None:
            config = {}
        print('Requesting user defined chip mask')
        for rowid in parent_rowids:
            img = vt.imread(gpath_list[rowid])
            mask = interact_impaint.impaint_mask2(img)
            mask_fpath = ut.unixjoin(mask_dpath, 'mask%d.png' % (rowid,))
            vt.imwrite(mask_fpath, mask)
            w, h = vt.get_size(mask)
            yield (w, h), mask_fpath

    @_register_preproc(
        tablename='chip', parents=[dummy_root], colnames=['size', 'chip'],
        coltypes=[(int, int), vt.imread], asobject=True)
    def dummy_preproc_chip(depc, annot_list, config=None):
        """
        TODO: Infer properties from docstr

        Args:
            annot_list (list): list of annot objects
            config (dict): config dictionary

        Returns:
            tuple : ((int, int), ('extern', vt.imread))
        """
        if config is None:
            config = {}
        # Demonstates using asobject to get input to function as a dictionary
        # of properties
        for annot in annot_list:
            print('Computing chips of annot=%r' % (annot,))
            chip_fpath = annot['gpath']
            w, h = vt.image.open_image_size(chip_fpath)
            size = (w, h)
            print('* chip_fpath = %r' % (chip_fpath,))
            print('* size = %r' % (size,))
            yield size, chip_fpath

    @_register_preproc(
        'probchip', [dummy_root], ['size', 'probchip'],
        coltypes=[(int, int), ('extern', vt.imread)])
    def dummy_preproc_probchip(depc, parent_rowids, config=None):
        if config is None:
            config = {}
        print('Computing probchip')
        for rowid in parent_rowids:
            yield (rowid, rowid), 'probchip.jpg'

    @_register_preproc(
        'keypoint', ['chip'], ['kpts', 'num'], [np.ndarray, int],
        docstr='Used to store individual chip features (ellipses)',)
    def dummy_preproc_kpts(depc, parent_rowids, config=None):
        if config is None:
            config = {}
        print('Computing kpts')
        for rowid in parent_rowids:
            yield np.ones((7 + rowid, 6)) + rowid, 7 + rowid

    @_register_preproc('descriptor', ['keypoint'], ['vecs'], [np.ndarray],)
    def dummy_preproc_vecs(depc, parent_rowids, config=None):
        if config is None:
            config = {}
        print('Computing vecs')
        for rowid in parent_rowids:
            yield np.ones((7 + rowid, 8), dtype=np.uint8) + rowid,

    @_register_preproc('fgweight', ['keypoint', 'probchip'], ['fgweight'], [np.ndarray],)
    def dummy_preproc_fgweight(depc, kpts_rowid, probchip_rowid, config=None):
        if config is None:
            config = {}
        print('Computing fgweight')
        for rowid1, rowid2 in zip(kpts_rowid, probchip_rowid):
            yield np.ones(7 + rowid1),

    @_register_preproc('notch', [dummy_root], ['notchdata'],)
    def dummy_preproc_notch(depc, parent_rowids, config=None):
        if config is None:
            config = {}
        print('Computing notch')
        for rowid in parent_rowids:
            yield np.empty(5 + rowid),

    @_register_preproc('spam', ['fgweight', 'chip', 'keypoint'],
                       ['spam', 'eggs', 'size', 'uuid', 'vector', 'textdata'],
                       [str, int, (int, int), uuid.UUID, np.ndarray, ('extern', ut.readfrom)],
                       docstr='I dont like spam',)
    def dummy_preproc_spam(depc, *args, **kwargs):
        config = kwargs.get('config', None)
        if config is None:
            config = {}
        print('Computing notch')
        ut.writeto('tmp.txt', ut.lorium_ipsum())
        for x in zip(*args):
            size = (42, 21)
            uuid = ut.get_zero_uuid()
            vector = np.ones(3)
            yield ('spam', 3665, size, uuid, vector, 'tmp.txt')

    # table = depc['spam']
    # print(ut.repr2(table.get_addtable_kw(), nl=2))

    depc.initialize()

    # table.print_schemadef()
    # print(table.db.get_schema_current_autogeneration_str())
    return depc