def online_evaluate( env, meta_model, base_model, criterion, metric, args, logger, save=False, easy_adapt=False, ): logger.log("Online evaluate: {:}".format(env)) metric.reset() loss_meter = AverageMeter() w_containers = dict() for idx, (future_time, (future_x, future_y)) in enumerate(env): with torch.no_grad(): meta_model.eval() base_model.eval() future_time_embed = meta_model.gen_time_embed( future_time.to(args.device).view(-1)) [future_container] = meta_model.gen_model(future_time_embed) if save: w_containers[idx] = future_container.no_grad_clone() future_x, future_y = future_x.to(args.device), future_y.to( args.device) future_y_hat = base_model.forward_with_container( future_x, future_container) future_loss = criterion(future_y_hat, future_y) loss_meter.update(future_loss.item()) # accumulate the metric scores score = metric(future_y_hat, future_y) if easy_adapt: meta_model.easy_adapt(future_time.item(), future_time_embed) refine, post_refine_loss = False, -1 else: refine, post_refine_loss = meta_model.adapt( base_model, criterion, future_time.item(), future_x, future_y, args.refine_lr, args.refine_epochs, { "param": future_time_embed, "loss": future_loss.item() }, ) logger.log( "[ONLINE] [{:03d}/{:03d}] loss={:.4f}, score={:.4f}".format( idx, len(env), future_loss.item(), score) + ", post-loss={:.4f}".format(post_refine_loss if refine else -1)) meta_model.clear_fixed() meta_model.clear_learnt() return w_containers, loss_meter.avg, metric.get_info()["score"]
def search_valid(xloader, network, criterion, extra_info, print_freq, logger): data_time, batch_time, losses, top1, top5 = ( AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), ) network.eval() network.apply(change_key("search_mode", "search")) end = time.time() # logger.log('Starting evaluating {:}'.format(epoch_info)) with torch.no_grad(): for i, (inputs, targets) in enumerate(xloader): # measure data loading time data_time.update(time.time() - end) # calculate prediction and loss targets = targets.cuda(non_blocking=True) logits, expected_flop = network(inputs) loss = criterion(logits, targets) # record prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5)) losses.update(loss.item(), inputs.size(0)) top1.update(prec1.item(), inputs.size(0)) top5.update(prec5.item(), inputs.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % print_freq == 0 or (i + 1) == len(xloader): Sstr = ("**VALID** " + time_string() + " [{:}][{:03d}/{:03d}]".format(extra_info, i, len(xloader))) Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format( batch_time=batch_time, data_time=data_time) Lstr = "Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})".format( loss=losses, top1=top1, top5=top5) Istr = "Size={:}".format(list(inputs.size())) logger.log(Sstr + " " + Tstr + " " + Lstr + " " + Istr) logger.log( " **VALID** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Loss:{loss:.3f}" .format( top1=top1, top5=top5, error1=100 - top1.avg, error5=100 - top5.avg, loss=losses.avg, )) return losses.avg, top1.avg, top5.avg
def procedure(xloader, network, criterion, scheduler, optimizer, mode: str): losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter() if mode == "train": network.train() elif mode == "valid": network.eval() else: raise ValueError("The mode is not right : {:}".format(mode)) device = torch.cuda.current_device() data_time, batch_time, end = AverageMeter(), AverageMeter(), time.time() for i, (inputs, targets) in enumerate(xloader): if mode == "train": scheduler.update(None, 1.0 * i / len(xloader)) targets = targets.cuda(device=device, non_blocking=True) if mode == "train": optimizer.zero_grad() # forward features, logits = network(inputs) loss = criterion(logits, targets) # backward if mode == "train": loss.backward() optimizer.step() # record loss and accuracy prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5)) losses.update(loss.item(), inputs.size(0)) top1.update(prec1.item(), inputs.size(0)) top5.update(prec5.item(), inputs.size(0)) # count time batch_time.update(time.time() - end) end = time.time() return losses.avg, top1.avg, top5.avg, batch_time.sum
def train_shared_cnn( xloader, shared_cnn, controller, criterion, scheduler, optimizer, epoch_str, print_freq, logger, ): data_time, batch_time = AverageMeter(), AverageMeter() losses, top1s, top5s, xend = ( AverageMeter(), AverageMeter(), AverageMeter(), time.time(), ) shared_cnn.train() controller.eval() for step, (inputs, targets) in enumerate(xloader): scheduler.update(None, 1.0 * step / len(xloader)) targets = targets.cuda(non_blocking=True) # measure data loading time data_time.update(time.time() - xend) with torch.no_grad(): _, _, sampled_arch = controller() optimizer.zero_grad() shared_cnn.module.update_arch(sampled_arch) _, logits = shared_cnn(inputs) loss = criterion(logits, targets) loss.backward() torch.nn.utils.clip_grad_norm_(shared_cnn.parameters(), 5) optimizer.step() # record prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5)) losses.update(loss.item(), inputs.size(0)) top1s.update(prec1.item(), inputs.size(0)) top5s.update(prec5.item(), inputs.size(0)) # measure elapsed time batch_time.update(time.time() - xend) xend = time.time() if step % print_freq == 0 or step + 1 == len(xloader): Sstr = ( "*Train-Shared-CNN* " + time_string() + " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader))) Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format( batch_time=batch_time, data_time=data_time) Wstr = "[Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format( loss=losses, top1=top1s, top5=top5s) logger.log(Sstr + " " + Tstr + " " + Wstr) return losses.avg, top1s.avg, top5s.avg
def procedure( xloader, network, criterion, optimizer, metric, mode: Text, logger_fn: Callable = None, ): data_time, batch_time = AverageMeter(), AverageMeter() if mode.lower() == "train": network.train() elif mode.lower() == "valid": network.eval() else: raise ValueError("The mode is not right : {:}".format(mode)) end = time.time() for i, (inputs, targets) in enumerate(xloader): # measure data loading time data_time.update(time.time() - end) # calculate prediction and loss if mode == "train": optimizer.zero_grad() outputs = network(inputs) targets = targets.to(get_device(outputs)) if mode == "train": loss = criterion(outputs, targets) loss.backward() optimizer.step() # record with torch.no_grad(): results = metric(outputs, targets) # measure elapsed time batch_time.update(time.time() - end) end = time.time() return metric.get_info()
def test_func( xloader, network, criterion, ): base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter() network.eval() for step, (base_inputs, base_targets) in enumerate( xloader ): base_targets = base_targets.cuda(non_blocking=True) _, logits = network(base_inputs.cuda()) base_loss = criterion(logits, base_targets) base_prec1, base_prec5 = obtain_accuracy( logits.data, base_targets.data, topk=(1, 5) ) base_losses.update(base_loss.item(), base_inputs.size(0)) base_top1.update(base_prec1.item(), base_inputs.size(0)) base_top5.update(base_prec5.item(), base_inputs.size(0)) return ( base_losses.avg, base_top1.avg, base_top5.avg, )
def search_func( xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger, ): data_time, batch_time = AverageMeter(), AverageMeter() base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter( ), AverageMeter() arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter( ), AverageMeter() end = time.time() network.train() for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader): scheduler.update(None, 1.0 * step / len(xloader)) base_targets = base_targets.cuda(non_blocking=True) arch_targets = arch_targets.cuda(non_blocking=True) # measure data loading time data_time.update(time.time() - end) # update the weights sampled_arch = network.module.dync_genotype(True) network.module.set_cal_mode("dynamic", sampled_arch) # network.module.set_cal_mode( 'urs' ) network.zero_grad() _, logits = network(base_inputs) base_loss = criterion(logits, base_targets) base_loss.backward() w_optimizer.step() # record base_prec1, base_prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5)) base_losses.update(base_loss.item(), base_inputs.size(0)) base_top1.update(base_prec1.item(), base_inputs.size(0)) base_top5.update(base_prec5.item(), base_inputs.size(0)) # update the architecture-weight network.module.set_cal_mode("joint") network.zero_grad() _, logits = network(arch_inputs) arch_loss = criterion(logits, arch_targets) arch_loss.backward() a_optimizer.step() # record arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) arch_losses.update(arch_loss.item(), arch_inputs.size(0)) arch_top1.update(arch_prec1.item(), arch_inputs.size(0)) arch_top5.update(arch_prec5.item(), arch_inputs.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if step % print_freq == 0 or step + 1 == len(xloader): Sstr = ( "*SEARCH* " + time_string() + " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader))) Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format( batch_time=batch_time, data_time=data_time) Wstr = "Base [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format( loss=base_losses, top1=base_top1, top5=base_top5) Astr = "Arch [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format( loss=arch_losses, top1=arch_top1, top5=arch_top5) logger.log(Sstr + " " + Tstr + " " + Wstr + " " + Astr) # print (nn.functional.softmax(network.module.arch_parameters, dim=-1)) # print (network.module.arch_parameters) return ( base_losses.avg, base_top1.avg, base_top5.avg, arch_losses.avg, arch_top1.avg, arch_top5.avg, )
def search_train_v2( search_loader, network, criterion, scheduler, base_optimizer, arch_optimizer, optim_config, extra_info, print_freq, logger, ): data_time, batch_time = AverageMeter(), AverageMeter() base_losses, arch_losses, top1, top5 = ( AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), ) arch_cls_losses, arch_flop_losses = AverageMeter(), AverageMeter() epoch_str, flop_need, flop_weight, flop_tolerant = ( extra_info["epoch-str"], extra_info["FLOP-exp"], extra_info["FLOP-weight"], extra_info["FLOP-tolerant"], ) network.train() logger.log( "[Search] : {:}, FLOP-Require={:.2f} MB, FLOP-WEIGHT={:.2f}".format( epoch_str, flop_need, flop_weight ) ) end = time.time() network.apply(change_key("search_mode", "search")) for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate( search_loader ): scheduler.update(None, 1.0 * step / len(search_loader)) # calculate prediction and loss base_targets = base_targets.cuda(non_blocking=True) arch_targets = arch_targets.cuda(non_blocking=True) # measure data loading time data_time.update(time.time() - end) # update the weights base_optimizer.zero_grad() logits, expected_flop = network(base_inputs) base_loss = criterion(logits, base_targets) base_loss.backward() base_optimizer.step() # record prec1, prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5)) base_losses.update(base_loss.item(), base_inputs.size(0)) top1.update(prec1.item(), base_inputs.size(0)) top5.update(prec5.item(), base_inputs.size(0)) # update the architecture arch_optimizer.zero_grad() logits, expected_flop = network(arch_inputs) flop_cur = network.module.get_flop("genotype", None, None) flop_loss, flop_loss_scale = get_flop_loss( expected_flop, flop_cur, flop_need, flop_tolerant ) acls_loss = criterion(logits, arch_targets) arch_loss = acls_loss + flop_loss * flop_weight arch_loss.backward() arch_optimizer.step() # record arch_losses.update(arch_loss.item(), arch_inputs.size(0)) arch_flop_losses.update(flop_loss_scale, arch_inputs.size(0)) arch_cls_losses.update(acls_loss.item(), arch_inputs.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if step % print_freq == 0 or (step + 1) == len(search_loader): Sstr = ( "**TRAIN** " + time_string() + " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(search_loader)) ) Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format( batch_time=batch_time, data_time=data_time ) Lstr = "Base-Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})".format( loss=base_losses, top1=top1, top5=top5 ) Vstr = "Acls-loss {aloss.val:.3f} ({aloss.avg:.3f}) FLOP-Loss {floss.val:.3f} ({floss.avg:.3f}) Arch-Loss {loss.val:.3f} ({loss.avg:.3f})".format( aloss=arch_cls_losses, floss=arch_flop_losses, loss=arch_losses ) logger.log(Sstr + " " + Tstr + " " + Lstr + " " + Vstr) # num_bytes = torch.cuda.max_memory_allocated( next(network.parameters()).device ) * 1.0 # logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Vstr + ' GPU={:.2f}MB'.format(num_bytes/1e6)) # Istr = 'Bsz={:} Asz={:}'.format(list(base_inputs.size()), list(arch_inputs.size())) # logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Vstr + ' ' + Istr) # print(network.module.get_arch_info()) # print(network.module.width_attentions[0]) # print(network.module.width_attentions[1]) logger.log( " **TRAIN** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Base-Loss:{baseloss:.3f}, Arch-Loss={archloss:.3f}".format( top1=top1, top5=top5, error1=100 - top1.avg, error5=100 - top5.avg, baseloss=base_losses.avg, archloss=arch_losses.avg, ) ) return base_losses.avg, arch_losses.avg, top1.avg, top5.avg
def main(xargs): assert torch.cuda.is_available(), "CUDA is not available." torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads(xargs.workers) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) train_data, valid_data, xshape, class_num = get_datasets( xargs.dataset, xargs.data_path, -1) config = load_config(xargs.config_path, { "class_num": class_num, "xshape": xshape }, logger) search_loader, _, valid_loader = get_nas_search_loaders( train_data, valid_data, xargs.dataset, "configs/nas-benchmark/", (config.batch_size, config.test_batch_size), xargs.workers, ) logger.log( "||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}" .format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size)) logger.log("||||||| {:10s} ||||||| Config={:}".format( xargs.dataset, config)) search_space = get_search_spaces("cell", xargs.search_space_name) if xargs.model_config is None: model_config = dict2config( dict( name="SETN", C=xargs.channel, N=xargs.num_cells, max_nodes=xargs.max_nodes, num_classes=class_num, space=search_space, affine=False, track_running_stats=bool(xargs.track_running_stats), ), None, ) else: model_config = load_config( xargs.model_config, dict( num_classes=class_num, space=search_space, affine=False, track_running_stats=bool(xargs.track_running_stats), ), None, ) logger.log("search space : {:}".format(search_space)) search_model = get_cell_based_tiny_net(model_config) w_optimizer, w_scheduler, criterion = get_optim_scheduler( search_model.get_weights(), config) a_optimizer = torch.optim.Adam( search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay, ) logger.log("w-optimizer : {:}".format(w_optimizer)) logger.log("a-optimizer : {:}".format(a_optimizer)) logger.log("w-scheduler : {:}".format(w_scheduler)) logger.log("criterion : {:}".format(criterion)) flop, param = get_model_infos(search_model, xshape) logger.log("FLOP = {:.2f} M, Params = {:.2f} MB".format(flop, param)) logger.log("search-space : {:}".format(search_space)) if xargs.arch_nas_dataset is None: api = None else: api = API(xargs.arch_nas_dataset) logger.log("{:} create API = {:} done".format(time_string(), api)) last_info, model_base_path, model_best_path = ( logger.path("info"), logger.path("model"), logger.path("best"), ) network, criterion = torch.nn.DataParallel( search_model).cuda(), criterion.cuda() if last_info.exists(): # automatically resume from previous checkpoint logger.log("=> loading checkpoint of the last-info '{:}' start".format( last_info)) last_info = torch.load(last_info) start_epoch = last_info["epoch"] checkpoint = torch.load(last_info["last_checkpoint"]) genotypes = checkpoint["genotypes"] valid_accuracies = checkpoint["valid_accuracies"] search_model.load_state_dict(checkpoint["search_model"]) w_scheduler.load_state_dict(checkpoint["w_scheduler"]) w_optimizer.load_state_dict(checkpoint["w_optimizer"]) a_optimizer.load_state_dict(checkpoint["a_optimizer"]) logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch." .format(last_info, start_epoch)) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) init_genotype, _ = get_best_arch(valid_loader, network, xargs.select_num) start_epoch, valid_accuracies, genotypes = 0, { "best": -1 }, { -1: init_genotype } # start training start_time, search_time, epoch_time, total_epoch = ( time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup, ) for epoch in range(start_epoch, total_epoch): w_scheduler.update(epoch, 0.0) need_time = "Time Left: {:}".format( convert_secs2time(epoch_time.val * (total_epoch - epoch), True)) epoch_str = "{:03d}-{:03d}".format(epoch, total_epoch) logger.log("\n[Search the {:}-th epoch] {:}, LR={:}".format( epoch_str, need_time, min(w_scheduler.get_lr()))) ( search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5, ) = search_func( search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger, ) search_time.update(time.time() - start_time) logger.log( "[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s" .format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum)) logger.log( "[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%" .format(epoch_str, search_a_loss, search_a_top1, search_a_top5)) genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.select_num) network.module.set_cal_mode("dynamic", genotype) valid_a_loss, valid_a_top1, valid_a_top5 = valid_func( valid_loader, network, criterion) logger.log( "[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}% | {:}" .format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5, genotype)) # search_model.set_cal_mode('urs') # valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion) # logger.log('[{:}] URS---evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) # search_model.set_cal_mode('joint') # valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion) # logger.log('[{:}] JOINT-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) # search_model.set_cal_mode('select') # valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion) # logger.log('[{:}] Selec-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) # check the best accuracy valid_accuracies[epoch] = valid_a_top1 genotypes[epoch] = genotype logger.log("<<<--->>> The {:}-th epoch : {:}".format( epoch_str, genotypes[epoch])) # save checkpoint save_path = save_checkpoint( { "epoch": epoch + 1, "args": deepcopy(xargs), "search_model": search_model.state_dict(), "w_optimizer": w_optimizer.state_dict(), "a_optimizer": a_optimizer.state_dict(), "w_scheduler": w_scheduler.state_dict(), "genotypes": genotypes, "valid_accuracies": valid_accuracies, }, model_base_path, logger, ) last_info = save_checkpoint( { "epoch": epoch + 1, "args": deepcopy(args), "last_checkpoint": save_path, }, logger.path("info"), logger, ) with torch.no_grad(): logger.log("{:}".format(search_model.show_alphas())) if api is not None: logger.log("{:}".format(api.query_by_arch(genotypes[epoch], "200"))) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() # the final post procedure : count the time start_time = time.time() genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.select_num) search_time.update(time.time() - start_time) network.module.set_cal_mode("dynamic", genotype) valid_a_loss, valid_a_top1, valid_a_top5 = valid_func( valid_loader, network, criterion) logger.log( "Last : the gentotype is : {:}, with the validation accuracy of {:.3f}%." .format(genotype, valid_a_top1)) logger.log("\n" + "-" * 100) # check the performance from the architecture dataset logger.log( "SETN : run {:} epochs, cost {:.1f} s, last-geno is {:}.".format( total_epoch, search_time.sum, genotype)) if api is not None: logger.log("{:}".format(api.query_by_arch(genotype, "200"))) logger.close()
def main(args): prepare_seed(args.rand_seed) logger = prepare_logger(args) train_env = get_synthetic_env(mode="train", version=args.env_version) valid_env = get_synthetic_env(mode="valid", version=args.env_version) trainval_env = get_synthetic_env(mode="trainval", version=args.env_version) test_env = get_synthetic_env(mode="test", version=args.env_version) all_env = get_synthetic_env(mode=None, version=args.env_version) logger.log("The training enviornment: {:}".format(train_env)) logger.log("The validation enviornment: {:}".format(valid_env)) logger.log("The trainval enviornment: {:}".format(trainval_env)) logger.log("The total enviornment: {:}".format(all_env)) logger.log("The test enviornment: {:}".format(test_env)) model_kwargs = dict( config=dict(model_type="norm_mlp"), input_dim=all_env.meta_info["input_dim"], output_dim=all_env.meta_info["output_dim"], hidden_dims=[args.hidden_dim] * 2, act_cls="relu", norm_cls="layer_norm_1d", ) model = get_model(**model_kwargs) model = model.to(args.device) if all_env.meta_info["task"] == "regression": criterion = torch.nn.MSELoss() metric_cls = MSEMetric elif all_env.meta_info["task"] == "classification": criterion = torch.nn.CrossEntropyLoss() metric_cls = Top1AccMetric else: raise ValueError( "This task ({:}) is not supported.".format(all_env.meta_info["task"]) ) maml = MAML( model, criterion, args.epochs, args.meta_lr, args.inner_lr, args.inner_step ) # meta-training last_success_epoch = 0 per_epoch_time, start_time = AverageMeter(), time.time() for iepoch in range(args.epochs): need_time = "Time Left: {:}".format( convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) ) head_str = ( "[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs) + need_time ) maml.zero_grad() meta_losses = [] for ibatch in range(args.meta_batch): future_idx = random.randint(0, len(trainval_env) - 1) future_t, (future_x, future_y) = trainval_env[future_idx] # -->> seq_times = trainval_env.get_seq_times(future_idx, args.seq_length) _, (allxs, allys) = trainval_env.seq_call(seq_times) allxs, allys = allxs.view(-1, allxs.shape[-1]), allys.view(-1, 1) if trainval_env.meta_info["task"] == "classification": allys = allys.view(-1) historical_x, historical_y = allxs.to(args.device), allys.to(args.device) future_container = maml.adapt(historical_x, historical_y) future_x, future_y = future_x.to(args.device), future_y.to(args.device) future_y_hat = maml.predict(future_x, future_container) future_loss = maml.criterion(future_y_hat, future_y) meta_losses.append(future_loss) meta_loss = torch.stack(meta_losses).mean() meta_loss.backward() maml.step() logger.log(head_str + " meta-loss: {:.4f}".format(meta_loss.item())) success, best_score = maml.save_best(-meta_loss.item()) if success: logger.log("Achieve the best with best_score = {:.3f}".format(best_score)) save_checkpoint(maml.state_dict(), logger.path("model"), logger) last_success_epoch = iepoch if iepoch - last_success_epoch >= args.early_stop_thresh: logger.log("Early stop at {:}".format(iepoch)) break per_epoch_time.update(time.time() - start_time) start_time = time.time() # meta-test maml.load_best() def finetune(index): seq_times = test_env.get_seq_times(index, args.seq_length) _, (allxs, allys) = test_env.seq_call(seq_times) allxs, allys = allxs.view(-1, allxs.shape[-1]), allys.view(-1, 1) if test_env.meta_info["task"] == "classification": allys = allys.view(-1) historical_x, historical_y = allxs.to(args.device), allys.to(args.device) future_container = maml.adapt(historical_x, historical_y) historical_y_hat = maml.predict(historical_x, future_container) train_metric = metric_cls(True) # model.analyze_weights() with torch.no_grad(): train_metric(historical_y_hat, historical_y) train_results = train_metric.get_info() return train_results, future_container metric = metric_cls(True) per_timestamp_time, start_time = AverageMeter(), time.time() for idx, (future_time, (future_x, future_y)) in enumerate(test_env): need_time = "Time Left: {:}".format( convert_secs2time(per_timestamp_time.avg * (len(test_env) - idx), True) ) logger.log( "[{:}]".format(time_string()) + " [{:04d}/{:04d}]".format(idx, len(test_env)) + " " + need_time ) # build optimizer train_results, future_container = finetune(idx) future_x, future_y = future_x.to(args.device), future_y.to(args.device) future_y_hat = maml.predict(future_x, future_container) future_loss = criterion(future_y_hat, future_y) metric(future_y_hat, future_y) log_str = ( "[{:}]".format(time_string()) + " [{:04d}/{:04d}]".format(idx, len(test_env)) + " train-score: {:.5f}, eval-score: {:.5f}".format( train_results["score"], metric.get_info()["score"] ) ) logger.log(log_str) logger.log("") per_timestamp_time.update(time.time() - start_time) start_time = time.time() logger.log("-" * 200 + "\n") logger.close()
def train_controller( xloader, shared_cnn, controller, criterion, optimizer, config, epoch_str, print_freq, logger, ): # config. (containing some necessary arg) # baseline: The baseline score (i.e. average val_acc) from the previous epoch data_time, batch_time = AverageMeter(), AverageMeter() ( GradnormMeter, LossMeter, ValAccMeter, EntropyMeter, BaselineMeter, RewardMeter, xend, ) = ( AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), time.time(), ) shared_cnn.eval() controller.train() controller.zero_grad() # for step, (inputs, targets) in enumerate(xloader): loader_iter = iter(xloader) for step in range(config.ctl_train_steps * config.ctl_num_aggre): try: inputs, targets = next(loader_iter) except: loader_iter = iter(xloader) inputs, targets = next(loader_iter) targets = targets.cuda(non_blocking=True) # measure data loading time data_time.update(time.time() - xend) log_prob, entropy, sampled_arch = controller() with torch.no_grad(): shared_cnn.module.update_arch(sampled_arch) _, logits = shared_cnn(inputs) val_top1, val_top5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5)) val_top1 = val_top1.view(-1) / 100 reward = val_top1 + config.ctl_entropy_w * entropy if config.baseline is None: baseline = val_top1 else: baseline = config.baseline - (1 - config.ctl_bl_dec) * ( config.baseline - reward) loss = -1 * log_prob * (reward - baseline) # account RewardMeter.update(reward.item()) BaselineMeter.update(baseline.item()) ValAccMeter.update(val_top1.item() * 100) LossMeter.update(loss.item()) EntropyMeter.update(entropy.item()) # Average gradient over controller_num_aggregate samples loss = loss / config.ctl_num_aggre loss.backward(retain_graph=True) # measure elapsed time batch_time.update(time.time() - xend) xend = time.time() if (step + 1) % config.ctl_num_aggre == 0: grad_norm = torch.nn.utils.clip_grad_norm_(controller.parameters(), 5.0) GradnormMeter.update(grad_norm) optimizer.step() controller.zero_grad() if step % print_freq == 0: Sstr = ("*Train-Controller* " + time_string() + " [{:}][{:03d}/{:03d}]".format( epoch_str, step, config.ctl_train_steps * config.ctl_num_aggre)) Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format( batch_time=batch_time, data_time=data_time) Wstr = "[Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Reward {reward.val:.2f} ({reward.avg:.2f})] Baseline {basel.val:.2f} ({basel.avg:.2f})".format( loss=LossMeter, top1=ValAccMeter, reward=RewardMeter, basel=BaselineMeter, ) Estr = "Entropy={:.4f} ({:.4f})".format(EntropyMeter.val, EntropyMeter.avg) logger.log(Sstr + " " + Tstr + " " + Wstr + " " + Estr) return ( LossMeter.avg, ValAccMeter.avg, BaselineMeter.avg, RewardMeter.avg, baseline.item(), )
def check_files(save_dir, meta_file, basestr): meta_infos = torch.load(meta_file, map_location="cpu") meta_archs = meta_infos["archs"] meta_num_archs = meta_infos["total"] assert meta_num_archs == len( meta_archs), "invalid number of archs : {:} vs {:}".format( meta_num_archs, len(meta_archs)) sub_model_dirs = sorted(list(save_dir.glob("*-*-{:}".format(basestr)))) print("{:} find {:} directories used to save checkpoints".format( time_string(), len(sub_model_dirs))) subdir2archs, num_evaluated_arch = collections.OrderedDict(), 0 num_seeds = defaultdict(lambda: 0) for index, sub_dir in enumerate(sub_model_dirs): xcheckpoints = list(sub_dir.glob("arch-*-seed-*.pth")) # xcheckpoints = list(sub_dir.glob('arch-*-seed-0777.pth')) + list(sub_dir.glob('arch-*-seed-0888.pth')) + list(sub_dir.glob('arch-*-seed-0999.pth')) arch_indexes = set() for checkpoint in xcheckpoints: temp_names = checkpoint.name.split("-") assert (len(temp_names) == 4 and temp_names[0] == "arch" and temp_names[2] == "seed"), "invalid checkpoint name : {:}".format( checkpoint.name) arch_indexes.add(temp_names[1]) subdir2archs[sub_dir] = sorted(list(arch_indexes)) num_evaluated_arch += len(arch_indexes) # count number of seeds for each architecture for arch_index in arch_indexes: num_seeds[len( list(sub_dir.glob( "arch-{:}-seed-*.pth".format(arch_index))))] += 1 print( "There are {:5d} architectures that have been evaluated ({:} in total, {:} ckps in total)." .format(num_evaluated_arch, meta_num_archs, sum(k * v for k, v in num_seeds.items()))) for key in sorted(list(num_seeds.keys())): print("There are {:5d} architectures that are evaluated {:} times.". format(num_seeds[key], key)) dir2ckps, dir2ckp_exists = dict(), dict() start_time, epoch_time = time.time(), AverageMeter() for IDX, (sub_dir, arch_indexes) in enumerate(subdir2archs.items()): if basestr == "C16-N5": seeds = [777, 888, 999] elif basestr == "C16-N5-LESS": seeds = [111, 777] else: raise ValueError("Invalid base str : {:}".format(basestr)) numrs = defaultdict(lambda: 0) all_checkpoints, all_ckp_exists = [], [] for arch_index in arch_indexes: checkpoints = [ "arch-{:}-seed-{:04d}.pth".format(arch_index, seed) for seed in seeds ] ckp_exists = [(sub_dir / x).exists() for x in checkpoints] arch_index = int(arch_index) assert ( 0 <= arch_index < len(meta_archs) ), "invalid arch-index {:} (not found in meta_archs)".format( arch_index) all_checkpoints += checkpoints all_ckp_exists += ckp_exists numrs[sum(ckp_exists)] += 1 dir2ckps[str(sub_dir)] = all_checkpoints dir2ckp_exists[str(sub_dir)] = all_ckp_exists # measure time epoch_time.update(time.time() - start_time) start_time = time.time() numrstr = ", ".join( ["{:}: {:03d}".format(x, numrs[x]) for x in sorted(numrs.keys())]) print( "{:} load [{:2d}/{:2d}] [{:03d} archs] [{:04d}->{:04d} ckps] {:} done, need {:}. {:}" .format( time_string(), IDX + 1, len(subdir2archs), len(arch_indexes), len(all_checkpoints), sum(all_ckp_exists), sub_dir, convert_secs2time( epoch_time.avg * (len(subdir2archs) - IDX - 1), True), numrstr, ))
def main( save_dir, workers, datasets, xpaths, splits, use_less, srange, arch_index, seeds, cover_mode, meta_info, arch_config, ): assert torch.cuda.is_available(), "CUDA is not available." torch.backends.cudnn.enabled = True # torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = True torch.set_num_threads(workers) assert (len(srange) == 2 and 0 <= srange[0] <= srange[1]), "invalid srange : {:}".format(srange) if use_less: sub_dir = Path(save_dir) / "{:06d}-{:06d}-C{:}-N{:}-LESS".format( srange[0], srange[1], arch_config["channel"], arch_config["num_cells"]) else: sub_dir = Path(save_dir) / "{:06d}-{:06d}-C{:}-N{:}".format( srange[0], srange[1], arch_config["channel"], arch_config["num_cells"]) logger = Logger(str(sub_dir), 0, False) all_archs = meta_info["archs"] assert srange[1] < meta_info[ "total"], "invalid range : {:}-{:} vs. {:}".format( srange[0], srange[1], meta_info["total"]) assert (arch_index == -1 or srange[0] <= arch_index <= srange[1] ), "invalid range : {:} vs. {:} vs. {:}".format( srange[0], arch_index, srange[1]) if arch_index == -1: to_evaluate_indexes = list(range(srange[0], srange[1] + 1)) else: to_evaluate_indexes = [arch_index] logger.log("xargs : seeds = {:}".format(seeds)) logger.log("xargs : arch_index = {:}".format(arch_index)) logger.log("xargs : cover_mode = {:}".format(cover_mode)) logger.log("-" * 100) logger.log( "Start evaluating range =: {:06d} vs. {:06d} vs. {:06d} / {:06d} with cover-mode={:}" .format(srange[0], arch_index, srange[1], meta_info["total"], cover_mode)) for i, (dataset, xpath, split) in enumerate(zip(datasets, xpaths, splits)): logger.log( "--->>> Evaluate {:}/{:} : dataset={:9s}, path={:}, split={:}". format(i, len(datasets), dataset, xpath, split)) logger.log("--->>> architecture config : {:}".format(arch_config)) start_time, epoch_time = time.time(), AverageMeter() for i, index in enumerate(to_evaluate_indexes): arch = all_archs[index] logger.log( "\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th architecture [seeds={:}] {:}" .format( "-" * 15, i, len(to_evaluate_indexes), index, meta_info["total"], seeds, "-" * 15, )) # logger.log('{:} {:} {:}'.format('-'*15, arch.tostr(), '-'*15)) logger.log("{:} {:} {:}".format("-" * 15, arch, "-" * 15)) # test this arch on different datasets with different seeds has_continue = False for seed in seeds: to_save_name = sub_dir / "arch-{:06d}-seed-{:04d}.pth".format( index, seed) if to_save_name.exists(): if cover_mode: logger.log( "Find existing file : {:}, remove it before evaluation" .format(to_save_name)) os.remove(str(to_save_name)) else: logger.log( "Find existing file : {:}, skip this evaluation". format(to_save_name)) has_continue = True continue results = evaluate_all_datasets( CellStructure.str2structure(arch), datasets, xpaths, splits, use_less, seed, arch_config, workers, logger, ) torch.save(results, to_save_name) logger.log( "{:} --evaluate-- {:06d}/{:06d} ({:06d}/{:06d})-th seed={:} done, save into {:}" .format( "-" * 15, i, len(to_evaluate_indexes), index, meta_info["total"], seed, to_save_name, )) # measure elapsed time if not has_continue: epoch_time.update(time.time() - start_time) start_time = time.time() need_time = "Time Left: {:}".format( convert_secs2time( epoch_time.avg * (len(to_evaluate_indexes) - i - 1), True)) logger.log("This arch costs : {:}".format( convert_secs2time(epoch_time.val, True))) logger.log("{:}".format("*" * 100)) logger.log("{:} {:74s} {:}".format( "*" * 10, "{:06d}/{:06d} ({:06d}/{:06d})-th done, left {:}".format( i, len(to_evaluate_indexes), index, meta_info["total"], need_time), "*" * 10, )) logger.log("{:}".format("*" * 100)) logger.close()
def main(args): logger, env_info, model_kwargs = lfna_setup(args) # check indexes to be evaluated to_evaluate_indexes = split_str2indexes(args.srange, env_info["total"], None) logger.log("Evaluate {:}, which has {:} timestamps in total.".format( args.srange, len(to_evaluate_indexes))) w_container_per_epoch = dict() per_timestamp_time, start_time = AverageMeter(), time.time() for i, idx in enumerate(to_evaluate_indexes): need_time = "Time Left: {:}".format( convert_secs2time( per_timestamp_time.avg * (len(to_evaluate_indexes) - i), True)) logger.log("[{:}]".format(time_string()) + " [{:04d}/{:04d}][{:04d}]".format(i, len( to_evaluate_indexes), idx) + " " + need_time) # train the same data assert idx != 0 historical_x, historical_y = [], [] for past_i in range(idx): historical_x.append(env_info["{:}-x".format(past_i)]) historical_y.append(env_info["{:}-y".format(past_i)]) historical_x, historical_y = torch.cat(historical_x), torch.cat( historical_y) historical_x, historical_y = subsample(historical_x, historical_y) # build model model = get_model(dict(model_type="simple_mlp"), **model_kwargs) # build optimizer optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True) criterion = torch.nn.MSELoss() lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( optimizer, milestones=[ int(args.epochs * 0.25), int(args.epochs * 0.5), int(args.epochs * 0.75), ], gamma=0.3, ) train_metric = MSEMetric() best_loss, best_param = None, None for _iepoch in range(args.epochs): preds = model(historical_x) optimizer.zero_grad() loss = criterion(preds, historical_y) loss.backward() optimizer.step() lr_scheduler.step() # save best if best_loss is None or best_loss > loss.item(): best_loss = loss.item() best_param = copy.deepcopy(model.state_dict()) model.load_state_dict(best_param) with torch.no_grad(): train_metric(preds, historical_y) train_results = train_metric.get_info() metric = ComposeMetric(MSEMetric(), SaveMetric()) eval_dataset = torch.utils.data.TensorDataset( env_info["{:}-x".format(idx)], env_info["{:}-y".format(idx)]) eval_loader = torch.utils.data.DataLoader(eval_dataset, batch_size=args.batch_size, shuffle=False, num_workers=0) results = basic_eval_fn(eval_loader, model, metric, logger) log_str = ("[{:}]".format(time_string()) + " [{:04d}/{:04d}]".format(idx, env_info["total"]) + " train-mse: {:.5f}, eval-mse: {:.5f}".format( train_results["mse"], results["mse"])) logger.log(log_str) save_path = logger.path(None) / "{:04d}-{:04d}.pth".format( idx, env_info["total"]) w_container_per_epoch[idx] = model.get_w_container().no_grad_clone() save_checkpoint( { "model_state_dict": model.state_dict(), "model": model, "index": idx, "timestamp": env_info["{:}-timestamp".format(idx)], }, save_path, logger, ) logger.log("") per_timestamp_time.update(time.time() - start_time) start_time = time.time() save_checkpoint( {"w_container_per_epoch": w_container_per_epoch}, logger.path(None) / "final-ckp.pth", logger, ) logger.log("-" * 200 + "\n") logger.close()
def main(xargs): assert torch.cuda.is_available(), "CUDA is not available." torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads(xargs.workers) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) train_data, valid_data, xshape, class_num = get_datasets( xargs.dataset, xargs.data_path, -1 ) # config_path = 'configs/nas-benchmark/algos/DARTS.config' config = load_config( xargs.config_path, {"class_num": class_num, "xshape": xshape}, logger ) search_loader, _, valid_loader = get_nas_search_loaders( train_data, valid_data, xargs.dataset, "configs/nas-benchmark/", config.batch_size, xargs.workers, ) logger.log( "||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format( xargs.dataset, len(search_loader), len(valid_loader), config.batch_size ) ) logger.log("||||||| {:10s} ||||||| Config={:}".format(xargs.dataset, config)) search_space = get_search_spaces("cell", xargs.search_space_name) if xargs.model_config is None: model_config = dict2config( { "name": "DARTS-V1", "C": xargs.channel, "N": xargs.num_cells, "max_nodes": xargs.max_nodes, "num_classes": class_num, "space": search_space, "affine": False, "track_running_stats": bool(xargs.track_running_stats), }, None, ) else: model_config = load_config( xargs.model_config, { "num_classes": class_num, "space": search_space, "affine": False, "track_running_stats": bool(xargs.track_running_stats), }, None, ) search_model = get_cell_based_tiny_net(model_config) logger.log("search-model :\n{:}".format(search_model)) w_optimizer, w_scheduler, criterion = get_optim_scheduler( search_model.get_weights(), config ) a_optimizer = torch.optim.Adam( search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay, ) logger.log("w-optimizer : {:}".format(w_optimizer)) logger.log("a-optimizer : {:}".format(a_optimizer)) logger.log("w-scheduler : {:}".format(w_scheduler)) logger.log("criterion : {:}".format(criterion)) flop, param = get_model_infos(search_model, xshape) # logger.log('{:}'.format(search_model)) logger.log("FLOP = {:.2f} M, Params = {:.2f} MB".format(flop, param)) if xargs.arch_nas_dataset is None: api = None else: api = API(xargs.arch_nas_dataset) logger.log("{:} create API = {:} done".format(time_string(), api)) last_info, model_base_path, model_best_path = ( logger.path("info"), logger.path("model"), logger.path("best"), ) network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda() if last_info.exists(): # automatically resume from previous checkpoint logger.log( "=> loading checkpoint of the last-info '{:}' start".format(last_info) ) last_info = torch.load(last_info) start_epoch = last_info["epoch"] checkpoint = torch.load(last_info["last_checkpoint"]) genotypes = checkpoint["genotypes"] valid_accuracies = checkpoint["valid_accuracies"] search_model.load_state_dict(checkpoint["search_model"]) w_scheduler.load_state_dict(checkpoint["w_scheduler"]) w_optimizer.load_state_dict(checkpoint["w_optimizer"]) a_optimizer.load_state_dict(checkpoint["a_optimizer"]) logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format( last_info, start_epoch ) ) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch, valid_accuracies, genotypes = ( 0, {"best": -1}, {-1: search_model.genotype()}, ) # start training start_time, search_time, epoch_time, total_epoch = ( time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup, ) for epoch in range(start_epoch, total_epoch): w_scheduler.update(epoch, 0.0) need_time = "Time Left: {:}".format( convert_secs2time(epoch_time.val * (total_epoch - epoch), True) ) epoch_str = "{:03d}-{:03d}".format(epoch, total_epoch) logger.log( "\n[Search the {:}-th epoch] {:}, LR={:}".format( epoch_str, need_time, min(w_scheduler.get_lr()) ) ) search_w_loss, search_w_top1, search_w_top5 = search_func( search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger, xargs.gradient_clip, ) search_time.update(time.time() - start_time) logger.log( "[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s".format( epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum ) ) valid_a_loss, valid_a_top1, valid_a_top5 = valid_func( valid_loader, network, criterion ) logger.log( "[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%".format( epoch_str, valid_a_loss, valid_a_top1, valid_a_top5 ) ) # check the best accuracy valid_accuracies[epoch] = valid_a_top1 if valid_a_top1 > valid_accuracies["best"]: valid_accuracies["best"] = valid_a_top1 genotypes["best"] = search_model.genotype() find_best = True else: find_best = False genotypes[epoch] = search_model.genotype() logger.log( "<<<--->>> The {:}-th epoch : {:}".format(epoch_str, genotypes[epoch]) ) # save checkpoint save_path = save_checkpoint( { "epoch": epoch + 1, "args": deepcopy(xargs), "search_model": search_model.state_dict(), "w_optimizer": w_optimizer.state_dict(), "a_optimizer": a_optimizer.state_dict(), "w_scheduler": w_scheduler.state_dict(), "genotypes": genotypes, "valid_accuracies": valid_accuracies, }, model_base_path, logger, ) last_info = save_checkpoint( { "epoch": epoch + 1, "args": deepcopy(args), "last_checkpoint": save_path, }, logger.path("info"), logger, ) if find_best: logger.log( "<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.".format( epoch_str, valid_a_top1 ) ) copy_checkpoint(model_base_path, model_best_path, logger) with torch.no_grad(): # logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu() )) logger.log("{:}".format(search_model.show_alphas())) if api is not None: logger.log("{:}".format(api.query_by_arch(genotypes[epoch], "200"))) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() logger.log("\n" + "-" * 100) logger.log( "DARTS-V1 : run {:} epochs, cost {:.1f} s, last-geno is {:}.".format( total_epoch, search_time.sum, genotypes[total_epoch - 1] ) ) if api is not None: logger.log("{:}".format(api.query_by_arch(genotypes[total_epoch - 1], "200"))) logger.close()
def main(xargs): assert torch.cuda.is_available(), "CUDA is not available." torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True # torch.set_num_threads(xargs.workers) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) train_data, valid_data, xshape, class_num = get_datasets( xargs.dataset, xargs.data_path, -1 ) if xargs.overwite_epochs is None: extra_info = {"class_num": class_num, "xshape": xshape} else: extra_info = { "class_num": class_num, "xshape": xshape, "epochs": xargs.overwite_epochs, } config = load_config(xargs.config_path, extra_info, logger) search_loader, train_loader, valid_loader = get_nas_search_loaders( train_data, valid_data, xargs.dataset, "configs/nas-benchmark/", (config.batch_size, config.test_batch_size), xargs.workers, ) logger.log( "||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format( xargs.dataset, len(search_loader), len(valid_loader), config.batch_size ) ) logger.log("||||||| {:10s} ||||||| Config={:}".format(xargs.dataset, config)) search_space = get_search_spaces(xargs.search_space, "nats-bench") model_config = dict2config( dict( name="generic", super_type="search-shape", candidate_Cs=search_space["candidates"], max_num_Cs=search_space["numbers"], num_classes=class_num, genotype=args.genotype, affine=bool(xargs.affine), track_running_stats=bool(xargs.track_running_stats), ), None, ) logger.log("search space : {:}".format(search_space)) logger.log("model config : {:}".format(model_config)) search_model = get_cell_based_tiny_net(model_config) search_model.set_algo(xargs.algo) logger.log("{:}".format(search_model)) w_optimizer, w_scheduler, criterion = get_optim_scheduler( search_model.weights, config ) a_optimizer = torch.optim.Adam( search_model.alphas, lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay, eps=xargs.arch_eps, ) logger.log("w-optimizer : {:}".format(w_optimizer)) logger.log("a-optimizer : {:}".format(a_optimizer)) logger.log("w-scheduler : {:}".format(w_scheduler)) logger.log("criterion : {:}".format(criterion)) params = count_parameters_in_MB(search_model) logger.log("The parameters of the search model = {:.2f} MB".format(params)) logger.log("search-space : {:}".format(search_space)) if bool(xargs.use_api): api = create(None, "size", fast_mode=True, verbose=False) else: api = None logger.log("{:} create API = {:} done".format(time_string(), api)) last_info, model_base_path, model_best_path = ( logger.path("info"), logger.path("model"), logger.path("best"), ) network, criterion = search_model.cuda(), criterion.cuda() # use a single GPU last_info, model_base_path, model_best_path = ( logger.path("info"), logger.path("model"), logger.path("best"), ) if last_info.exists(): # automatically resume from previous checkpoint logger.log( "=> loading checkpoint of the last-info '{:}' start".format(last_info) ) last_info = torch.load(last_info) start_epoch = last_info["epoch"] checkpoint = torch.load(last_info["last_checkpoint"]) genotypes = checkpoint["genotypes"] valid_accuracies = checkpoint["valid_accuracies"] search_model.load_state_dict(checkpoint["search_model"]) w_scheduler.load_state_dict(checkpoint["w_scheduler"]) w_optimizer.load_state_dict(checkpoint["w_optimizer"]) a_optimizer.load_state_dict(checkpoint["a_optimizer"]) logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format( last_info, start_epoch ) ) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch, valid_accuracies, genotypes = 0, {"best": -1}, {-1: network.random} # start training start_time, search_time, epoch_time, total_epoch = ( time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup, ) for epoch in range(start_epoch, total_epoch): w_scheduler.update(epoch, 0.0) need_time = "Time Left: {:}".format( convert_secs2time(epoch_time.val * (total_epoch - epoch), True) ) epoch_str = "{:03d}-{:03d}".format(epoch, total_epoch) if ( xargs.warmup_ratio is None or xargs.warmup_ratio <= float(epoch) / total_epoch ): enable_controller = True network.set_warmup_ratio(None) else: enable_controller = False network.set_warmup_ratio( 1.0 - float(epoch) / total_epoch / xargs.warmup_ratio ) logger.log( "\n[Search the {:}-th epoch] {:}, LR={:}, controller-warmup={:}, enable_controller={:}".format( epoch_str, need_time, min(w_scheduler.get_lr()), network.warmup_ratio, enable_controller, ) ) if xargs.algo == "mask_gumbel" or xargs.algo == "tas": network.set_tau( xargs.tau_max - (xargs.tau_max - xargs.tau_min) * epoch / (total_epoch - 1) ) logger.log("[RESET tau as : {:}]".format(network.tau)) ( search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5, ) = search_func( search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, enable_controller, xargs.algo, epoch_str, xargs.print_freq, logger, ) search_time.update(time.time() - start_time) logger.log( "[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s".format( epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum ) ) logger.log( "[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%".format( epoch_str, search_a_loss, search_a_top1, search_a_top5 ) ) genotype = network.genotype logger.log("[{:}] - [get_best_arch] : {:}".format(epoch_str, genotype)) valid_a_loss, valid_a_top1, valid_a_top5 = valid_func( valid_loader, network, criterion, logger ) logger.log( "[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}% | {:}".format( epoch_str, valid_a_loss, valid_a_top1, valid_a_top5, genotype ) ) valid_accuracies[epoch] = valid_a_top1 genotypes[epoch] = genotype logger.log( "<<<--->>> The {:}-th epoch : {:}".format(epoch_str, genotypes[epoch]) ) # save checkpoint save_path = save_checkpoint( { "epoch": epoch + 1, "args": deepcopy(xargs), "search_model": search_model.state_dict(), "w_optimizer": w_optimizer.state_dict(), "a_optimizer": a_optimizer.state_dict(), "w_scheduler": w_scheduler.state_dict(), "genotypes": genotypes, "valid_accuracies": valid_accuracies, }, model_base_path, logger, ) last_info = save_checkpoint( { "epoch": epoch + 1, "args": deepcopy(args), "last_checkpoint": save_path, }, logger.path("info"), logger, ) with torch.no_grad(): logger.log("{:}".format(search_model.show_alphas())) if api is not None: logger.log("{:}".format(api.query_by_arch(genotypes[epoch], "90"))) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() # the final post procedure : count the time start_time = time.time() genotype = network.genotype search_time.update(time.time() - start_time) valid_a_loss, valid_a_top1, valid_a_top5 = valid_func( valid_loader, network, criterion, logger ) logger.log( "Last : the gentotype is : {:}, with the validation accuracy of {:.3f}%.".format( genotype, valid_a_top1 ) ) logger.log("\n" + "-" * 100) # check the performance from the architecture dataset logger.log( "[{:}] run {:} epochs, cost {:.1f} s, last-geno is {:}.".format( xargs.algo, total_epoch, search_time.sum, genotype ) ) if api is not None: logger.log("{:}".format(api.query_by_arch(genotype, "90"))) logger.close()
def search_func( xloader, network, criterion, scheduler, w_optimizer, a_optimizer, enable_controller, algo, epoch_str, print_freq, logger, ): data_time, batch_time = AverageMeter(), AverageMeter() base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter() arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() end = time.time() network.train() for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate( xloader ): scheduler.update(None, 1.0 * step / len(xloader)) base_inputs = base_inputs.cuda(non_blocking=True) arch_inputs = arch_inputs.cuda(non_blocking=True) base_targets = base_targets.cuda(non_blocking=True) arch_targets = arch_targets.cuda(non_blocking=True) # measure data loading time data_time.update(time.time() - end) # Update the weights network.zero_grad() _, logits, _ = network(base_inputs) base_loss = criterion(logits, base_targets) base_loss.backward() w_optimizer.step() # record base_prec1, base_prec5 = obtain_accuracy( logits.data, base_targets.data, topk=(1, 5) ) base_losses.update(base_loss.item(), base_inputs.size(0)) base_top1.update(base_prec1.item(), base_inputs.size(0)) base_top5.update(base_prec5.item(), base_inputs.size(0)) # update the architecture-weight network.zero_grad() a_optimizer.zero_grad() _, logits, log_probs = network(arch_inputs) arch_prec1, arch_prec5 = obtain_accuracy( logits.data, arch_targets.data, topk=(1, 5) ) if algo == "mask_rl": with torch.no_grad(): RL_BASELINE_EMA.update(arch_prec1.item()) rl_advantage = arch_prec1 - RL_BASELINE_EMA.value rl_log_prob = sum(log_probs) arch_loss = -rl_advantage * rl_log_prob elif algo == "tas" or algo == "mask_gumbel": arch_loss = criterion(logits, arch_targets) else: raise ValueError("invalid algorightm name: {:}".format(algo)) if enable_controller: arch_loss.backward() a_optimizer.step() # record arch_losses.update(arch_loss.item(), arch_inputs.size(0)) arch_top1.update(arch_prec1.item(), arch_inputs.size(0)) arch_top5.update(arch_prec5.item(), arch_inputs.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if step % print_freq == 0 or step + 1 == len(xloader): Sstr = ( "*SEARCH* " + time_string() + " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader)) ) Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format( batch_time=batch_time, data_time=data_time ) Wstr = "Base [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format( loss=base_losses, top1=base_top1, top5=base_top5 ) Astr = "Arch [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format( loss=arch_losses, top1=arch_top1, top5=arch_top5 ) logger.log(Sstr + " " + Tstr + " " + Wstr + " " + Astr) return ( base_losses.avg, base_top1.avg, base_top5.avg, arch_losses.avg, arch_top1.avg, arch_top5.avg, )
def main(args): prepare_seed(args.rand_seed) logger = prepare_logger(args) env = get_synthetic_env(mode=None, version=args.env_version) model_kwargs = dict( config=dict(model_type="norm_mlp"), input_dim=env.meta_info["input_dim"], output_dim=env.meta_info["output_dim"], hidden_dims=[args.hidden_dim] * 2, act_cls="relu", norm_cls="layer_norm_1d", ) logger.log("The total enviornment: {:}".format(env)) w_containers = dict() if env.meta_info["task"] == "regression": criterion = torch.nn.MSELoss() metric_cls = MSEMetric elif env.meta_info["task"] == "classification": criterion = torch.nn.CrossEntropyLoss() metric_cls = Top1AccMetric else: raise ValueError("This task ({:}) is not supported.".format( all_env.meta_info["task"])) per_timestamp_time, start_time = AverageMeter(), time.time() for idx, (future_time, (future_x, future_y)) in enumerate(env): need_time = "Time Left: {:}".format( convert_secs2time(per_timestamp_time.avg * (len(env) - idx), True)) logger.log("[{:}]".format(time_string()) + " [{:04d}/{:04d}]".format(idx, len(env)) + " " + need_time) # train the same data historical_x = future_x.to(args.device) historical_y = future_y.to(args.device) # build model model = get_model(**model_kwargs) model = model.to(args.device) if idx == 0: print(model) # build optimizer optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True) lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( optimizer, milestones=[ int(args.epochs * 0.25), int(args.epochs * 0.5), int(args.epochs * 0.75), ], gamma=0.3, ) train_metric = metric_cls(True) best_loss, best_param = None, None for _iepoch in range(args.epochs): preds = model(historical_x) optimizer.zero_grad() loss = criterion(preds, historical_y) loss.backward() optimizer.step() lr_scheduler.step() # save best if best_loss is None or best_loss > loss.item(): best_loss = loss.item() best_param = copy.deepcopy(model.state_dict()) model.load_state_dict(best_param) model.analyze_weights() with torch.no_grad(): train_metric(preds, historical_y) train_results = train_metric.get_info() xmetric = ComposeMetric(metric_cls(True), SaveMetric()) eval_dataset = torch.utils.data.TensorDataset(future_x.to(args.device), future_y.to(args.device)) eval_loader = torch.utils.data.DataLoader(eval_dataset, batch_size=args.batch_size, shuffle=False, num_workers=0) results = basic_eval_fn(eval_loader, model, xmetric, logger) log_str = ("[{:}]".format(time_string()) + " [{:04d}/{:04d}]".format(idx, len(env)) + " train-score: {:.5f}, eval-score: {:.5f}".format( train_results["score"], results["score"])) logger.log(log_str) save_path = logger.path(None) / "{:04d}-{:04d}.pth".format( idx, len(env)) w_containers[idx] = model.get_w_container().no_grad_clone() save_checkpoint( { "model_state_dict": model.state_dict(), "model": model, "index": idx, "timestamp": future_time.item(), }, save_path, logger, ) logger.log("") per_timestamp_time.update(time.time() - start_time) start_time = time.time() save_checkpoint( {"w_containers": w_containers}, logger.path(None) / "final-ckp.pth", logger, ) logger.log("-" * 200 + "\n") logger.close()
def main(args): logger, model_kwargs = lfna_setup(args) w_containers = dict() per_timestamp_time, start_time = AverageMeter(), time.time() for idx in range(args.prev_time, env_info["total"]): need_time = "Time Left: {:}".format( convert_secs2time(per_timestamp_time.avg * (env_info["total"] - idx), True) ) logger.log( "[{:}]".format(time_string()) + " [{:04d}/{:04d}]".format(idx, env_info["total"]) + " " + need_time ) # train the same data historical_x = env_info["{:}-x".format(idx - args.prev_time)] historical_y = env_info["{:}-y".format(idx - args.prev_time)] # build model model = get_model(**model_kwargs) print(model) # build optimizer optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True) criterion = torch.nn.MSELoss() lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( optimizer, milestones=[ int(args.epochs * 0.25), int(args.epochs * 0.5), int(args.epochs * 0.75), ], gamma=0.3, ) train_metric = MSEMetric() best_loss, best_param = None, None for _iepoch in range(args.epochs): preds = model(historical_x) optimizer.zero_grad() loss = criterion(preds, historical_y) loss.backward() optimizer.step() lr_scheduler.step() # save best if best_loss is None or best_loss > loss.item(): best_loss = loss.item() best_param = copy.deepcopy(model.state_dict()) model.load_state_dict(best_param) model.analyze_weights() with torch.no_grad(): train_metric(preds, historical_y) train_results = train_metric.get_info() metric = ComposeMetric(MSEMetric(), SaveMetric()) eval_dataset = torch.utils.data.TensorDataset( env_info["{:}-x".format(idx)], env_info["{:}-y".format(idx)] ) eval_loader = torch.utils.data.DataLoader( eval_dataset, batch_size=args.batch_size, shuffle=False, num_workers=0 ) results = basic_eval_fn(eval_loader, model, metric, logger) log_str = ( "[{:}]".format(time_string()) + " [{:04d}/{:04d}]".format(idx, env_info["total"]) + " train-mse: {:.5f}, eval-mse: {:.5f}".format( train_results["mse"], results["mse"] ) ) logger.log(log_str) save_path = logger.path(None) / "{:04d}-{:04d}.pth".format( idx, env_info["total"] ) w_containers[idx] = model.get_w_container().no_grad_clone() save_checkpoint( { "model_state_dict": model.state_dict(), "model": model, "index": idx, "timestamp": env_info["{:}-timestamp".format(idx)], }, save_path, logger, ) logger.log("") per_timestamp_time.update(time.time() - start_time) start_time = time.time() save_checkpoint( {"w_containers": w_containers}, logger.path(None) / "final-ckp.pth", logger, ) logger.log("-" * 200 + "\n") logger.close()
def train_single_model(save_dir, workers, datasets, xpaths, splits, use_less, seeds, model_str, arch_config): assert torch.cuda.is_available(), "CUDA is not available." torch.backends.cudnn.enabled = True torch.backends.cudnn.deterministic = True # torch.backends.cudnn.benchmark = True torch.set_num_threads(workers) save_dir = (Path(save_dir) / "specifics" / "{:}-{:}-{:}-{:}".format( "LESS" if use_less else "FULL", model_str, arch_config["channel"], arch_config["num_cells"], )) logger = Logger(str(save_dir), 0, False) if model_str in CellArchitectures: arch = CellArchitectures[model_str] logger.log( "The model string is found in pre-defined architecture dict : {:}". format(model_str)) else: try: arch = CellStructure.str2structure(model_str) except: raise ValueError( "Invalid model string : {:}. It can not be found or parsed.". format(model_str)) assert arch.check_valid_op(get_search_spaces( "cell", "full")), "{:} has the invalid op.".format(arch) logger.log("Start train-evaluate {:}".format(arch.tostr())) logger.log("arch_config : {:}".format(arch_config)) start_time, seed_time = time.time(), AverageMeter() for _is, seed in enumerate(seeds): logger.log( "\nThe {:02d}/{:02d}-th seed is {:} ----------------------<.>----------------------" .format(_is, len(seeds), seed)) to_save_name = save_dir / "seed-{:04d}.pth".format(seed) if to_save_name.exists(): logger.log("Find the existing file {:}, directly load!".format( to_save_name)) checkpoint = torch.load(to_save_name) else: logger.log( "Does not find the existing file {:}, train and evaluate!". format(to_save_name)) checkpoint = evaluate_all_datasets( arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger, ) torch.save(checkpoint, to_save_name) # log information logger.log("{:}".format(checkpoint["info"])) all_dataset_keys = checkpoint["all_dataset_keys"] for dataset_key in all_dataset_keys: logger.log("\n{:} dataset : {:} {:}".format( "-" * 15, dataset_key, "-" * 15)) dataset_info = checkpoint[dataset_key] # logger.log('Network ==>\n{:}'.format( dataset_info['net_string'] )) logger.log("Flops = {:} MB, Params = {:} MB".format( dataset_info["flop"], dataset_info["param"])) logger.log("config : {:}".format(dataset_info["config"])) logger.log("Training State (finish) = {:}".format( dataset_info["finish-train"])) last_epoch = dataset_info["total_epoch"] - 1 train_acc1es, train_acc5es = ( dataset_info["train_acc1es"], dataset_info["train_acc5es"], ) valid_acc1es, valid_acc5es = ( dataset_info["valid_acc1es"], dataset_info["valid_acc5es"], ) logger.log( "Last Info : Train = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%, Test = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%" .format( train_acc1es[last_epoch], train_acc5es[last_epoch], 100 - train_acc1es[last_epoch], valid_acc1es[last_epoch], valid_acc5es[last_epoch], 100 - valid_acc1es[last_epoch], )) # measure elapsed time seed_time.update(time.time() - start_time) start_time = time.time() need_time = "Time Left: {:}".format( convert_secs2time(seed_time.avg * (len(seeds) - _is - 1), True)) logger.log( "\n<<<***>>> The {:02d}/{:02d}-th seed is {:} <finish> other procedures need {:}" .format(_is, len(seeds), seed, need_time)) logger.close()
def meta_train_procedure(base_model, meta_model, criterion, xenv, args, logger): base_model.train() meta_model.train() optimizer = torch.optim.Adam( meta_model.get_parameters(True, True, True), lr=args.lr, weight_decay=args.weight_decay, amsgrad=True, ) logger.log("Pre-train the meta-model") logger.log("Using the optimizer: {:}".format(optimizer)) meta_model.set_best_dir(logger.path(None) / "ckps-pretrain-v2") final_best_name = "final-pretrain-{:}.pth".format(args.rand_seed) if meta_model.has_best(final_best_name): meta_model.load_best(final_best_name) logger.log( "Directly load the best model from {:}".format(final_best_name)) return total_indexes = list(range(meta_model.meta_length)) meta_model.set_best_name("pretrain-{:}.pth".format(args.rand_seed)) last_success_epoch, early_stop_thresh = 0, args.pretrain_early_stop_thresh per_epoch_time, start_time = AverageMeter(), time.time() device = args.device for iepoch in range(args.epochs): left_time = "Time Left: {:}".format( convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)) optimizer.zero_grad() generated_time_embeds = meta_model.gen_time_embed( meta_model.meta_timestamps) batch_indexes = random.choices(total_indexes, k=args.meta_batch) raw_time_steps = meta_model.meta_timestamps[batch_indexes] regularization_loss = F.l1_loss(generated_time_embeds, meta_model.super_meta_embed, reduction="mean") # future loss total_future_losses, total_present_losses = [], [] future_containers = meta_model.gen_model( generated_time_embeds[batch_indexes]) present_containers = meta_model.gen_model( meta_model.super_meta_embed[batch_indexes]) for ibatch, time_step in enumerate(raw_time_steps.cpu().tolist()): _, (inputs, targets) = xenv(time_step) inputs, targets = inputs.to(device), targets.to(device) predictions = base_model.forward_with_container( inputs, future_containers[ibatch]) total_future_losses.append(criterion(predictions, targets)) predictions = base_model.forward_with_container( inputs, present_containers[ibatch]) total_present_losses.append(criterion(predictions, targets)) with torch.no_grad(): meta_std = torch.stack(total_future_losses).std().item() loss_future = torch.stack(total_future_losses).mean() loss_present = torch.stack(total_present_losses).mean() total_loss = loss_future + loss_present + regularization_loss total_loss.backward() optimizer.step() # success success, best_score = meta_model.save_best(-total_loss.item()) logger.log( "{:} [META {:04d}/{:}] loss : {:.4f} +- {:.4f} = {:.4f} + {:.4f} + {:.4f}" .format( time_string(), iepoch, args.epochs, total_loss.item(), meta_std, loss_future.item(), loss_present.item(), regularization_loss.item(), ) + ", batch={:}".format(len(total_future_losses)) + ", success={:}, best={:.4f}".format(success, -best_score) + ", LS={:}/{:}".format(iepoch - last_success_epoch, early_stop_thresh) + ", {:}".format(left_time)) if success: last_success_epoch = iepoch if iepoch - last_success_epoch >= early_stop_thresh: logger.log("Early stop the pre-training at {:}".format(iepoch)) break per_epoch_time.update(time.time() - start_time) start_time = time.time() meta_model.load_best() # save to the final model meta_model.set_best_name(final_best_name) success, _ = meta_model.save_best(best_score + 1e-6) assert success logger.log("Save the best model into {:}".format(final_best_name))
def main( save_dir: Path, workers: int, datasets: List[Text], xpaths: List[Text], splits: List[int], seeds: List[int], nets: List[str], opt_config: Dict[Text, Any], to_evaluate_indexes: tuple, cover_mode: bool, arch_config: Dict[Text, Any], ): log_dir = save_dir / "logs" log_dir.mkdir(parents=True, exist_ok=True) logger = Logger(str(log_dir), os.getpid(), False) logger.log("xargs : seeds = {:}".format(seeds)) logger.log("xargs : cover_mode = {:}".format(cover_mode)) logger.log("-" * 100) logger.log("Start evaluating range =: {:06d} - {:06d}".format( min(to_evaluate_indexes), max(to_evaluate_indexes)) + "({:} in total) / {:06d} with cover-mode={:}".format( len(to_evaluate_indexes), len(nets), cover_mode)) for i, (dataset, xpath, split) in enumerate(zip(datasets, xpaths, splits)): logger.log( "--->>> Evaluate {:}/{:} : dataset={:9s}, path={:}, split={:}". format(i, len(datasets), dataset, xpath, split)) logger.log("--->>> optimization config : {:}".format(opt_config)) start_time, epoch_time = time.time(), AverageMeter() for i, index in enumerate(to_evaluate_indexes): arch = nets[index] logger.log( "\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th arch [seeds={:}] {:}" .format( time_string(), i, len(to_evaluate_indexes), index, len(nets), seeds, "-" * 15, )) logger.log("{:} {:} {:}".format("-" * 15, arch, "-" * 15)) # test this arch on different datasets with different seeds has_continue = False for seed in seeds: to_save_name = save_dir / "arch-{:06d}-seed-{:04d}.pth".format( index, seed) if to_save_name.exists(): if cover_mode: logger.log( "Find existing file : {:}, remove it before evaluation" .format(to_save_name)) os.remove(str(to_save_name)) else: logger.log( "Find existing file : {:}, skip this evaluation". format(to_save_name)) has_continue = True continue results = evaluate_all_datasets( CellStructure.str2structure(arch), datasets, xpaths, splits, opt_config, seed, arch_config, workers, logger, ) torch.save(results, to_save_name) logger.log( "\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th arch [seeds={:}] ===>>> {:}" .format( time_string(), i, len(to_evaluate_indexes), index, len(nets), seeds, to_save_name, )) # measure elapsed time if not has_continue: epoch_time.update(time.time() - start_time) start_time = time.time() need_time = "Time Left: {:}".format( convert_secs2time( epoch_time.avg * (len(to_evaluate_indexes) - i - 1), True)) logger.log("This arch costs : {:}".format( convert_secs2time(epoch_time.val, True))) logger.log("{:}".format("*" * 100)) logger.log("{:} {:74s} {:}".format( "*" * 10, "{:06d}/{:06d} ({:06d}/{:06d})-th done, left {:}".format( i, len(to_evaluate_indexes), index, len(nets), need_time), "*" * 10, )) logger.log("{:}".format("*" * 100)) logger.close()
def procedure(xloader, network, criterion, scheduler, optimizer, mode, config, extra_info, print_freq, logger, local_epoch): data_time, batch_time, losses, top1, top5 = ( AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), ) if mode == "train": network.train() elif mode == "valid": network.eval() else: raise ValueError("The mode is not right : {:}".format(mode)) # logger.log('[{:5s}] config :: auxiliary={:}, message={:}'.format(mode, config.auxiliary if hasattr(config, 'auxiliary') else -1, network.module.get_message())) # logger.log( # "[{:5s}] config :: auxiliary={:}".format( # mode, config.auxiliary if hasattr(config, "auxiliary") else -1 # ) # ) end = time.time() loss_aux = None for epoch in range(local_epoch): for i, (inputs, targets) in enumerate(xloader): if mode == "train": scheduler.update(None, 1.0 * i / len(xloader)) # measure data loading time data_time.update(time.time() - end) # calculate prediction and loss targets = targets.cuda(non_blocking=True) inputs = inputs.to('cuda') if mode == "train": optimizer.zero_grad() logits = network(inputs) if isinstance(logits, tuple): features, logits = logits if isinstance(logits, list): assert len( logits ) == 2, "logits must has {:} items instead of {:}".format( 2, len(logits)) logits, logits_aux = logits else: logits, logits_aux = logits, None loss = criterion(logits, targets) # if loss_aux is not None and config is not None and hasattr(config, "auxiliary") and config.auxiliary > 0: # loss_aux = criterion(logits_aux, targets) # loss += config.auxiliary * loss_aux if mode == "train": loss.backward() optimizer.step() # record prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5)) losses.update(loss.item(), inputs.size(0)) top1.update(prec1.item(), inputs.size(0)) top5.update(prec5.item(), inputs.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % print_freq == 0 or (i + 1) == len(xloader): Sstr = (" {:5s} ".format(mode.upper()) + time_string() + " [{:}][{:03d}/{:03d}]".format(extra_info, i, len(xloader))) if scheduler is not None: Sstr += " {:}".format(scheduler.get_min_info()) Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format( batch_time=batch_time, data_time=data_time) Lstr = "Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})".format( loss=losses, top1=top1, top5=top5) Istr = "Size={:}".format(list(inputs.size())) logger.log(Sstr + " " + Tstr + " " + Lstr + " " + Istr) logger.log( " **{mode:5s}** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Loss:{loss:.3f}" .format( mode=mode.upper(), top1=top1, top5=top5, error1=100 - top1.avg, error5=100 - top5.avg, loss=losses.avg, )) return losses.avg, top1.avg, top5.avg
def main(xargs): assert torch.cuda.is_available(), "CUDA is not available." torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads(xargs.workers) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) train_data, test_data, xshape, class_num = get_datasets( xargs.dataset, xargs.data_path, -1) logger.log("use config from : {:}".format(xargs.config_path)) config = load_config(xargs.config_path, { "class_num": class_num, "xshape": xshape }, logger) _, train_loader, valid_loader = get_nas_search_loaders( train_data, test_data, xargs.dataset, "configs/nas-benchmark/", config.batch_size, xargs.workers, ) # since ENAS will train the controller on valid-loader, we need to use train transformation for valid-loader valid_loader.dataset.transform = deepcopy(train_loader.dataset.transform) if hasattr(valid_loader.dataset, "transforms"): valid_loader.dataset.transforms = deepcopy( train_loader.dataset.transforms) # data loader logger.log( "||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}" .format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size)) logger.log("||||||| {:10s} ||||||| Config={:}".format( xargs.dataset, config)) search_space = get_search_spaces("cell", xargs.search_space_name) model_config = dict2config( { "name": "ENAS", "C": xargs.channel, "N": xargs.num_cells, "max_nodes": xargs.max_nodes, "num_classes": class_num, "space": search_space, "affine": False, "track_running_stats": bool(xargs.track_running_stats), }, None, ) shared_cnn = get_cell_based_tiny_net(model_config) controller = shared_cnn.create_controller() w_optimizer, w_scheduler, criterion = get_optim_scheduler( shared_cnn.parameters(), config) a_optimizer = torch.optim.Adam( controller.parameters(), lr=config.controller_lr, betas=config.controller_betas, eps=config.controller_eps, ) logger.log("w-optimizer : {:}".format(w_optimizer)) logger.log("a-optimizer : {:}".format(a_optimizer)) logger.log("w-scheduler : {:}".format(w_scheduler)) logger.log("criterion : {:}".format(criterion)) # flop, param = get_model_infos(shared_cnn, xshape) # logger.log('{:}'.format(shared_cnn)) # logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) logger.log("search-space : {:}".format(search_space)) if xargs.arch_nas_dataset is None: api = None else: api = API(xargs.arch_nas_dataset) logger.log("{:} create API = {:} done".format(time_string(), api)) shared_cnn, controller, criterion = ( torch.nn.DataParallel(shared_cnn).cuda(), controller.cuda(), criterion.cuda(), ) last_info, model_base_path, model_best_path = ( logger.path("info"), logger.path("model"), logger.path("best"), ) if last_info.exists(): # automatically resume from previous checkpoint logger.log("=> loading checkpoint of the last-info '{:}' start".format( last_info)) last_info = torch.load(last_info) start_epoch = last_info["epoch"] checkpoint = torch.load(last_info["last_checkpoint"]) genotypes = checkpoint["genotypes"] baseline = checkpoint["baseline"] valid_accuracies = checkpoint["valid_accuracies"] shared_cnn.load_state_dict(checkpoint["shared_cnn"]) controller.load_state_dict(checkpoint["controller"]) w_scheduler.load_state_dict(checkpoint["w_scheduler"]) w_optimizer.load_state_dict(checkpoint["w_optimizer"]) a_optimizer.load_state_dict(checkpoint["a_optimizer"]) logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch." .format(last_info, start_epoch)) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch, valid_accuracies, genotypes, baseline = 0, { "best": -1 }, {}, None # start training start_time, search_time, epoch_time, total_epoch = ( time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup, ) for epoch in range(start_epoch, total_epoch): w_scheduler.update(epoch, 0.0) need_time = "Time Left: {:}".format( convert_secs2time(epoch_time.val * (total_epoch - epoch), True)) epoch_str = "{:03d}-{:03d}".format(epoch, total_epoch) logger.log( "\n[Search the {:}-th epoch] {:}, LR={:}, baseline={:}".format( epoch_str, need_time, min(w_scheduler.get_lr()), baseline)) cnn_loss, cnn_top1, cnn_top5 = train_shared_cnn( train_loader, shared_cnn, controller, criterion, w_scheduler, w_optimizer, epoch_str, xargs.print_freq, logger, ) logger.log( "[{:}] shared-cnn : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%" .format(epoch_str, cnn_loss, cnn_top1, cnn_top5)) ctl_loss, ctl_acc, ctl_baseline, ctl_reward, baseline = train_controller( valid_loader, shared_cnn, controller, criterion, a_optimizer, dict2config( { "baseline": baseline, "ctl_train_steps": xargs.controller_train_steps, "ctl_num_aggre": xargs.controller_num_aggregate, "ctl_entropy_w": xargs.controller_entropy_weight, "ctl_bl_dec": xargs.controller_bl_dec, }, None, ), epoch_str, xargs.print_freq, logger, ) search_time.update(time.time() - start_time) logger.log( "[{:}] controller : loss={:.2f}, accuracy={:.2f}%, baseline={:.2f}, reward={:.2f}, current-baseline={:.4f}, time-cost={:.1f} s" .format( epoch_str, ctl_loss, ctl_acc, ctl_baseline, ctl_reward, baseline, search_time.sum, )) best_arch, _ = get_best_arch(controller, shared_cnn, valid_loader) shared_cnn.module.update_arch(best_arch) _, best_valid_acc, _ = valid_func(valid_loader, shared_cnn, criterion) genotypes[epoch] = best_arch # check the best accuracy valid_accuracies[epoch] = best_valid_acc if best_valid_acc > valid_accuracies["best"]: valid_accuracies["best"] = best_valid_acc genotypes["best"] = best_arch find_best = True else: find_best = False logger.log("<<<--->>> The {:}-th epoch : {:}".format( epoch_str, genotypes[epoch])) # save checkpoint save_path = save_checkpoint( { "epoch": epoch + 1, "args": deepcopy(xargs), "baseline": baseline, "shared_cnn": shared_cnn.state_dict(), "controller": controller.state_dict(), "w_optimizer": w_optimizer.state_dict(), "a_optimizer": a_optimizer.state_dict(), "w_scheduler": w_scheduler.state_dict(), "genotypes": genotypes, "valid_accuracies": valid_accuracies, }, model_base_path, logger, ) last_info = save_checkpoint( { "epoch": epoch + 1, "args": deepcopy(args), "last_checkpoint": save_path, }, logger.path("info"), logger, ) if find_best: logger.log( "<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%." .format(epoch_str, best_valid_acc)) copy_checkpoint(model_base_path, model_best_path, logger) if api is not None: logger.log("{:}".format(api.query_by_arch(genotypes[epoch], "200"))) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() logger.log("\n" + "-" * 100) logger.log("During searching, the best architecture is {:}".format( genotypes["best"])) logger.log("Its accuracy is {:.2f}%".format(valid_accuracies["best"])) logger.log("Randomly select {:} architectures and select the best.".format( xargs.controller_num_samples)) start_time = time.time() final_arch, _ = get_best_arch(controller, shared_cnn, valid_loader, xargs.controller_num_samples) search_time.update(time.time() - start_time) shared_cnn.module.update_arch(final_arch) final_loss, final_top1, final_top5 = valid_func(valid_loader, shared_cnn, criterion) logger.log("The Selected Final Architecture : {:}".format(final_arch)) logger.log("Loss={:.3f}, Accuracy@1={:.2f}%, Accuracy@5={:.2f}%".format( final_loss, final_top1, final_top5)) logger.log( "ENAS : run {:} epochs, cost {:.1f} s, last-geno is {:}.".format( total_epoch, search_time.sum, final_arch)) if api is not None: logger.log("{:}".format(api.query_by_arch(final_arch))) logger.close()
def main(args): assert torch.cuda.is_available(), "CUDA is not available." torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True # torch.backends.cudnn.deterministic = True # torch.set_num_threads(args.workers) prepare_seed(args.rand_seed) logger = prepare_logger(args) # prepare dataset train_data, valid_data, xshape, class_num = get_datasets( args.dataset, args.data_path, args.cutout_length) # train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True , num_workers=args.workers, pin_memory=True) valid_loader = torch.utils.data.DataLoader( valid_data, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True, ) split_file_path = Path(args.split_path) assert split_file_path.exists(), "{:} does not exist".format( split_file_path) split_info = torch.load(split_file_path) train_split, valid_split = split_info["train"], split_info["valid"] assert (len(set(train_split).intersection(set(valid_split))) == 0 ), "There should be 0 element that belongs to both train and valid" assert len(train_split) + len(valid_split) == len( train_data), "{:} + {:} vs {:}".format(len(train_split), len(valid_split), len(train_data)) search_dataset = SearchDataset(args.dataset, train_data, train_split, valid_split) search_train_loader = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split), pin_memory=True, num_workers=args.workers, ) search_valid_loader = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), pin_memory=True, num_workers=args.workers, ) search_loader = torch.utils.data.DataLoader( search_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True, sampler=None, ) # get configures model_config = load_config( args.model_config, { "class_num": class_num, "search_mode": args.search_shape }, logger, ) # obtain the model search_model = obtain_search_model(model_config) MAX_FLOP, param = get_model_infos(search_model, xshape) optim_config = load_config(args.optim_config, { "class_num": class_num, "FLOP": MAX_FLOP }, logger) logger.log("Model Information : {:}".format(search_model.get_message())) logger.log("MAX_FLOP = {:} M".format(MAX_FLOP)) logger.log("Params = {:} M".format(param)) logger.log("train_data : {:}".format(train_data)) logger.log("search-data: {:}".format(search_dataset)) logger.log("search_train_loader : {:} samples".format(len(train_split))) logger.log("search_valid_loader : {:} samples".format(len(valid_split))) base_optimizer, scheduler, criterion = get_optim_scheduler( search_model.base_parameters(), optim_config) arch_optimizer = torch.optim.Adam( search_model.arch_parameters(), lr=optim_config.arch_LR, betas=(0.5, 0.999), weight_decay=optim_config.arch_decay, ) logger.log("base-optimizer : {:}".format(base_optimizer)) logger.log("arch-optimizer : {:}".format(arch_optimizer)) logger.log("scheduler : {:}".format(scheduler)) logger.log("criterion : {:}".format(criterion)) last_info, model_base_path, model_best_path = ( logger.path("info"), logger.path("model"), logger.path("best"), ) network, criterion = torch.nn.DataParallel( search_model).cuda(), criterion.cuda() # load checkpoint if last_info.exists() or (args.resume is not None and osp.isfile( args.resume)): # automatically resume from previous checkpoint if args.resume is not None and osp.isfile(args.resume): resume_path = Path(args.resume) elif last_info.exists(): resume_path = last_info else: raise ValueError("Something is wrong.") logger.log("=> loading checkpoint of the last-info '{:}' start".format( resume_path)) checkpoint = torch.load(resume_path) if "last_checkpoint" in checkpoint: last_checkpoint_path = checkpoint["last_checkpoint"] if not last_checkpoint_path.exists(): logger.log("Does not find {:}, try another path".format( last_checkpoint_path)) last_checkpoint_path = (resume_path.parent / last_checkpoint_path.parent.name / last_checkpoint_path.name) assert (last_checkpoint_path.exists() ), "can not find the checkpoint from {:}".format( last_checkpoint_path) checkpoint = torch.load(last_checkpoint_path) start_epoch = checkpoint["epoch"] + 1 search_model.load_state_dict(checkpoint["search_model"]) scheduler.load_state_dict(checkpoint["scheduler"]) base_optimizer.load_state_dict(checkpoint["base_optimizer"]) arch_optimizer.load_state_dict(checkpoint["arch_optimizer"]) valid_accuracies = checkpoint["valid_accuracies"] arch_genotypes = checkpoint["arch_genotypes"] discrepancies = checkpoint["discrepancies"] logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch." .format(resume_path, start_epoch)) else: logger.log( "=> do not find the last-info file : {:} or resume : {:}".format( last_info, args.resume)) start_epoch, valid_accuracies, arch_genotypes, discrepancies = ( 0, { "best": -1 }, {}, {}, ) # main procedure train_func, valid_func = get_procedures(args.procedure) total_epoch = optim_config.epochs + optim_config.warmup start_time, epoch_time = time.time(), AverageMeter() for epoch in range(start_epoch, total_epoch): scheduler.update(epoch, 0.0) search_model.set_tau(args.gumbel_tau_max, args.gumbel_tau_min, epoch * 1.0 / total_epoch) need_time = "Time Left: {:}".format( convert_secs2time(epoch_time.avg * (total_epoch - epoch), True)) epoch_str = "epoch={:03d}/{:03d}".format(epoch, total_epoch) LRs = scheduler.get_lr() find_best = False logger.log( "\n***{:s}*** start {:s} {:s}, LR=[{:.6f} ~ {:.6f}], scheduler={:}, tau={:}, FLOP={:.2f}" .format( time_string(), epoch_str, need_time, min(LRs), max(LRs), scheduler, search_model.tau, MAX_FLOP, )) # train for one epoch train_base_loss, train_arch_loss, train_acc1, train_acc5 = train_func( search_loader, network, criterion, scheduler, base_optimizer, arch_optimizer, optim_config, { "epoch-str": epoch_str, "FLOP-exp": MAX_FLOP * args.FLOP_ratio, "FLOP-weight": args.FLOP_weight, "FLOP-tolerant": MAX_FLOP * args.FLOP_tolerant, }, args.print_freq, logger, ) # log the results logger.log( "***{:s}*** TRAIN [{:}] base-loss = {:.6f}, arch-loss = {:.6f}, accuracy-1 = {:.2f}, accuracy-5 = {:.2f}" .format( time_string(), epoch_str, train_base_loss, train_arch_loss, train_acc1, train_acc5, )) cur_FLOP, genotype = search_model.get_flop("genotype", model_config._asdict(), None) arch_genotypes[epoch] = genotype arch_genotypes["last"] = genotype logger.log("[{:}] genotype : {:}".format(epoch_str, genotype)) arch_info, discrepancy = search_model.get_arch_info() logger.log(arch_info) discrepancies[epoch] = discrepancy logger.log( "[{:}] FLOP : {:.2f} MB, ratio : {:.4f}, Expected-ratio : {:.4f}, Discrepancy : {:.3f}" .format( epoch_str, cur_FLOP, cur_FLOP / MAX_FLOP, args.FLOP_ratio, np.mean(discrepancy), )) # if cur_FLOP/MAX_FLOP > args.FLOP_ratio: # init_flop_weight = init_flop_weight * args.FLOP_decay # else: # init_flop_weight = init_flop_weight / args.FLOP_decay # evaluate the performance if (epoch % args.eval_frequency == 0) or (epoch + 1 == total_epoch): logger.log("-" * 150) valid_loss, valid_acc1, valid_acc5 = valid_func( search_valid_loader, network, criterion, epoch_str, args.print_freq_eval, logger, ) valid_accuracies[epoch] = valid_acc1 logger.log( "***{:s}*** VALID [{:}] loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f} | Best-Valid-Acc@1={:.2f}, Error@1={:.2f}" .format( time_string(), epoch_str, valid_loss, valid_acc1, valid_acc5, valid_accuracies["best"], 100 - valid_accuracies["best"], )) if valid_acc1 > valid_accuracies["best"]: valid_accuracies["best"] = valid_acc1 arch_genotypes["best"] = genotype find_best = True logger.log( "Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}." .format( epoch, valid_acc1, valid_acc5, 100 - valid_acc1, 100 - valid_acc5, model_best_path, )) # save checkpoint save_path = save_checkpoint( { "epoch": epoch, "args": deepcopy(args), "valid_accuracies": deepcopy(valid_accuracies), "model-config": model_config._asdict(), "optim-config": optim_config._asdict(), "search_model": search_model.state_dict(), "scheduler": scheduler.state_dict(), "base_optimizer": base_optimizer.state_dict(), "arch_optimizer": arch_optimizer.state_dict(), "arch_genotypes": arch_genotypes, "discrepancies": discrepancies, }, model_base_path, logger, ) if find_best: copy_checkpoint(model_base_path, model_best_path, logger) last_info = save_checkpoint( { "epoch": epoch, "args": deepcopy(args), "last_checkpoint": save_path, }, logger.path("info"), logger, ) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() logger.log("") logger.log("-" * 100) last_config_path = logger.path("log") / "seed-{:}-last.config".format( args.rand_seed) configure2str(arch_genotypes["last"], str(last_config_path)) logger.log("save the last config int {:} :\n{:}".format( last_config_path, arch_genotypes["last"])) best_arch, valid_acc = arch_genotypes["best"], valid_accuracies["best"] for key, config in arch_genotypes.items(): if key == "last": continue FLOP_ratio = config["estimated_FLOP"] / MAX_FLOP if abs(FLOP_ratio - args.FLOP_ratio) <= args.FLOP_tolerant: if valid_acc < valid_accuracies[key]: best_arch, valid_acc = config, valid_accuracies[key] print("Best-Arch : {:}\nRatio={:}, Valid-ACC={:}".format( best_arch, best_arch["estimated_FLOP"] / MAX_FLOP, valid_acc)) best_config_path = logger.path("log") / "seed-{:}-best.config".format( args.rand_seed) configure2str(best_arch, str(best_config_path)) logger.log("save the last config int {:} :\n{:}".format( best_config_path, best_arch)) logger.log("\n" + "-" * 200) logger.log( "Finish training/validation in {:}, and save final checkpoint into {:}" .format(convert_secs2time(epoch_time.sum, True), logger.path("info"))) logger.close()
def main(args): prepare_seed(args.rand_seed) logger = prepare_logger(args) env = get_synthetic_env(mode="test", version=args.env_version) model_kwargs = dict( config=dict(model_type="norm_mlp"), input_dim=env.meta_info["input_dim"], output_dim=env.meta_info["output_dim"], hidden_dims=[args.hidden_dim] * 2, act_cls="relu", norm_cls="layer_norm_1d", ) logger.log("The total enviornment: {:}".format(env)) w_containers = dict() if env.meta_info["task"] == "regression": criterion = torch.nn.MSELoss() metric_cls = MSEMetric elif env.meta_info["task"] == "classification": criterion = torch.nn.CrossEntropyLoss() metric_cls = Top1AccMetric else: raise ValueError("This task ({:}) is not supported.".format( all_env.meta_info["task"])) def finetune(index): seq_times = env.get_seq_times(index, args.seq_length) _, (allxs, allys) = env.seq_call(seq_times) allxs, allys = allxs.view(-1, allxs.shape[-1]), allys.view(-1, 1) if env.meta_info["task"] == "classification": allys = allys.view(-1) historical_x, historical_y = allxs.to(args.device), allys.to( args.device) model = get_model(**model_kwargs) model = model.to(args.device) optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True) lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( optimizer, milestones=[ int(args.epochs * 0.25), int(args.epochs * 0.5), int(args.epochs * 0.75), ], gamma=0.3, ) train_metric = metric_cls(True) best_loss, best_param = None, None for _iepoch in range(args.epochs): preds = model(historical_x) optimizer.zero_grad() loss = criterion(preds, historical_y) loss.backward() optimizer.step() lr_scheduler.step() # save best if best_loss is None or best_loss > loss.item(): best_loss = loss.item() best_param = copy.deepcopy(model.state_dict()) model.load_state_dict(best_param) # model.analyze_weights() with torch.no_grad(): train_metric(preds, historical_y) train_results = train_metric.get_info() return train_results, model metric = metric_cls(True) per_timestamp_time, start_time = AverageMeter(), time.time() for idx, (future_time, (future_x, future_y)) in enumerate(env): need_time = "Time Left: {:}".format( convert_secs2time(per_timestamp_time.avg * (len(env) - idx), True)) logger.log("[{:}]".format(time_string()) + " [{:04d}/{:04d}]".format(idx, len(env)) + " " + need_time) # train the same data train_results, model = finetune(idx) # build optimizer xmetric = ComposeMetric(metric_cls(True), SaveMetric()) future_x, future_y = future_x.to(args.device), future_y.to(args.device) future_y_hat = model(future_x) future_loss = criterion(future_y_hat, future_y) metric(future_y_hat, future_y) log_str = ("[{:}]".format(time_string()) + " [{:04d}/{:04d}]".format(idx, len(env)) + " train-score: {:.5f}, eval-score: {:.5f}".format( train_results["score"], metric.get_info()["score"])) logger.log(log_str) logger.log("") per_timestamp_time.update(time.time() - start_time) start_time = time.time() save_checkpoint( {"w_containers": w_containers}, logger.path(None) / "final-ckp.pth", logger, ) logger.log("-" * 200 + "\n") logger.close() return metric.get_info()["score"]
def valid_func(xloader, network, criterion): data_time, batch_time = AverageMeter(), AverageMeter() arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() network.eval() end = time.time() with torch.no_grad(): for step, (arch_inputs, arch_targets) in enumerate(xloader): arch_targets = arch_targets.cuda(non_blocking=True) # measure data loading time data_time.update(time.time() - end) # prediction _, logits = network(arch_inputs) arch_loss = criterion(logits, arch_targets) # record arch_prec1, arch_prec5 = obtain_accuracy( logits.data, arch_targets.data, topk=(1, 5) ) arch_losses.update(arch_loss.item(), arch_inputs.size(0)) arch_top1.update(arch_prec1.item(), arch_inputs.size(0)) arch_top5.update(arch_prec5.item(), arch_inputs.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() return arch_losses.avg, arch_top1.avg, arch_top5.avg
def procedure( xloader, teacher, network, criterion, scheduler, optimizer, mode, config, extra_info, print_freq, logger, ): data_time, batch_time, losses, top1, top5 = ( AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), ) Ttop1, Ttop5 = AverageMeter(), AverageMeter() if mode == "train": network.train() elif mode == "valid": network.eval() else: raise ValueError("The mode is not right : {:}".format(mode)) teacher.eval() logger.log( "[{:5s}] config :: auxiliary={:}, KD :: [alpha={:.2f}, temperature={:.2f}]" .format( mode, config.auxiliary if hasattr(config, "auxiliary") else -1, config.KD_alpha, config.KD_temperature, )) end = time.time() for i, (inputs, targets) in enumerate(xloader): if mode == "train": scheduler.update(None, 1.0 * i / len(xloader)) # measure data loading time data_time.update(time.time() - end) # calculate prediction and loss targets = targets.cuda(non_blocking=True) if mode == "train": optimizer.zero_grad() student_f, logits = network(inputs) if isinstance(logits, list): assert len( logits ) == 2, "logits must has {:} items instead of {:}".format( 2, len(logits)) logits, logits_aux = logits else: logits, logits_aux = logits, None with torch.no_grad(): teacher_f, teacher_logits = teacher(inputs) loss = loss_KD_fn( criterion, logits, teacher_logits, student_f, teacher_f, targets, config.KD_alpha, config.KD_temperature, ) if config is not None and hasattr( config, "auxiliary") and config.auxiliary > 0: loss_aux = criterion(logits_aux, targets) loss += config.auxiliary * loss_aux if mode == "train": loss.backward() optimizer.step() # record sprec1, sprec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5)) losses.update(loss.item(), inputs.size(0)) top1.update(sprec1.item(), inputs.size(0)) top5.update(sprec5.item(), inputs.size(0)) # teacher tprec1, tprec5 = obtain_accuracy(teacher_logits.data, targets.data, topk=(1, 5)) Ttop1.update(tprec1.item(), inputs.size(0)) Ttop5.update(tprec5.item(), inputs.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % print_freq == 0 or (i + 1) == len(xloader): Sstr = ( " {:5s} ".format(mode.upper()) + time_string() + " [{:}][{:03d}/{:03d}]".format(extra_info, i, len(xloader))) if scheduler is not None: Sstr += " {:}".format(scheduler.get_min_info()) Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format( batch_time=batch_time, data_time=data_time) Lstr = "Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})".format( loss=losses, top1=top1, top5=top5) Lstr += " Teacher : acc@1={:.2f}, acc@5={:.2f}".format( Ttop1.avg, Ttop5.avg) Istr = "Size={:}".format(list(inputs.size())) logger.log(Sstr + " " + Tstr + " " + Lstr + " " + Istr) logger.log(" **{:5s}** accuracy drop :: @1={:.2f}, @5={:.2f}".format( mode.upper(), Ttop1.avg - top1.avg, Ttop5.avg - top5.avg)) logger.log( " **{mode:5s}** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Loss:{loss:.3f}" .format( mode=mode.upper(), top1=top1, top5=top5, error1=100 - top1.avg, error5=100 - top5.avg, loss=losses.avg, )) return losses.avg, top1.avg, top5.avg
def search_func( xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger, gradient_clip, ): data_time, batch_time = AverageMeter(), AverageMeter() base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter() arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() network.train() end = time.time() for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate( xloader ): scheduler.update(None, 1.0 * step / len(xloader)) base_targets = base_targets.cuda(non_blocking=True) arch_targets = arch_targets.cuda(non_blocking=True) # measure data loading time data_time.update(time.time() - end) # update the weights w_optimizer.zero_grad() _, logits = network(base_inputs) base_loss = criterion(logits, base_targets) base_loss.backward() if gradient_clip > 0: torch.nn.utils.clip_grad_norm_(network.parameters(), gradient_clip) w_optimizer.step() # record base_prec1, base_prec5 = obtain_accuracy( logits.data, base_targets.data, topk=(1, 5) ) base_losses.update(base_loss.item(), base_inputs.size(0)) base_top1.update(base_prec1.item(), base_inputs.size(0)) base_top5.update(base_prec5.item(), base_inputs.size(0)) # update the architecture-weight a_optimizer.zero_grad() _, logits = network(arch_inputs) arch_loss = criterion(logits, arch_targets) arch_loss.backward() a_optimizer.step() # record arch_prec1, arch_prec5 = obtain_accuracy( logits.data, arch_targets.data, topk=(1, 5) ) arch_losses.update(arch_loss.item(), arch_inputs.size(0)) arch_top1.update(arch_prec1.item(), arch_inputs.size(0)) arch_top5.update(arch_prec5.item(), arch_inputs.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if step % print_freq == 0 or step + 1 == len(xloader): Sstr = ( "*SEARCH* " + time_string() + " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader)) ) Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format( batch_time=batch_time, data_time=data_time ) Wstr = "Base [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format( loss=base_losses, top1=base_top1, top5=base_top5 ) Astr = "Arch [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format( loss=arch_losses, top1=arch_top1, top5=arch_top5 ) logger.log(Sstr + " " + Tstr + " " + Wstr + " " + Astr) return base_losses.avg, base_top1.avg, base_top5.avg
def main(args): assert torch.cuda.is_available(), "CUDA is not available." torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True # torch.backends.cudnn.deterministic = True # torch.set_num_threads(args.workers) prepare_seed(args.rand_seed) logger = prepare_logger(args) train_data, valid_data, xshape, class_num = get_datasets( args.dataset, args.data_path, args.cutout_length) train_loader = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True, ) valid_loader = torch.utils.data.DataLoader( valid_data, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True, ) # get configures model_config = load_config(args.model_config, {"class_num": class_num}, logger) optim_config = load_config( args.optim_config, { "class_num": class_num, "KD_alpha": args.KD_alpha, "KD_temperature": args.KD_temperature, }, logger, ) # load checkpoint teacher_base = load_net_from_checkpoint(args.KD_checkpoint) teacher = torch.nn.DataParallel(teacher_base).cuda() base_model = obtain_model(model_config) flop, param = get_model_infos(base_model, xshape) logger.log("Student ====>>>>:\n{:}".format(base_model)) logger.log("Teacher ====>>>>:\n{:}".format(teacher_base)) logger.log("model information : {:}".format(base_model.get_message())) logger.log("-" * 50) logger.log("Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G".format( param, flop, flop / 1e3)) logger.log("-" * 50) logger.log("train_data : {:}".format(train_data)) logger.log("valid_data : {:}".format(valid_data)) optimizer, scheduler, criterion = get_optim_scheduler( base_model.parameters(), optim_config) logger.log("optimizer : {:}".format(optimizer)) logger.log("scheduler : {:}".format(scheduler)) logger.log("criterion : {:}".format(criterion)) last_info, model_base_path, model_best_path = ( logger.path("info"), logger.path("model"), logger.path("best"), ) network, criterion = torch.nn.DataParallel( base_model).cuda(), criterion.cuda() if last_info.exists(): # automatically resume from previous checkpoint logger.log("=> loading checkpoint of the last-info '{:}' start".format( last_info)) last_info = torch.load(last_info) start_epoch = last_info["epoch"] + 1 checkpoint = torch.load(last_info["last_checkpoint"]) base_model.load_state_dict(checkpoint["base-model"]) scheduler.load_state_dict(checkpoint["scheduler"]) optimizer.load_state_dict(checkpoint["optimizer"]) valid_accuracies = checkpoint["valid_accuracies"] max_bytes = checkpoint["max_bytes"] logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch." .format(last_info, start_epoch)) elif args.resume is not None: assert Path( args.resume).exists(), "Can not find the resume file : {:}".format( args.resume) checkpoint = torch.load(args.resume) start_epoch = checkpoint["epoch"] + 1 base_model.load_state_dict(checkpoint["base-model"]) scheduler.load_state_dict(checkpoint["scheduler"]) optimizer.load_state_dict(checkpoint["optimizer"]) valid_accuracies = checkpoint["valid_accuracies"] max_bytes = checkpoint["max_bytes"] logger.log( "=> loading checkpoint from '{:}' start with {:}-th epoch.".format( args.resume, start_epoch)) elif args.init_model is not None: assert Path(args.init_model).exists( ), "Can not find the initialization file : {:}".format(args.init_model) checkpoint = torch.load(args.init_model) base_model.load_state_dict(checkpoint["base-model"]) start_epoch, valid_accuracies, max_bytes = 0, {"best": -1}, {} logger.log("=> initialize the model from {:}".format(args.init_model)) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch, valid_accuracies, max_bytes = 0, {"best": -1}, {} train_func, valid_func = get_procedures(args.procedure) total_epoch = optim_config.epochs + optim_config.warmup # Main Training and Evaluation Loop start_time = time.time() epoch_time = AverageMeter() for epoch in range(start_epoch, total_epoch): scheduler.update(epoch, 0.0) need_time = "Time Left: {:}".format( convert_secs2time(epoch_time.avg * (total_epoch - epoch), True)) epoch_str = "epoch={:03d}/{:03d}".format(epoch, total_epoch) LRs = scheduler.get_lr() find_best = False logger.log( "\n***{:s}*** start {:s} {:s}, LR=[{:.6f} ~ {:.6f}], scheduler={:}" .format(time_string(), epoch_str, need_time, min(LRs), max(LRs), scheduler)) # train for one epoch train_loss, train_acc1, train_acc5 = train_func( train_loader, teacher, network, criterion, scheduler, optimizer, optim_config, epoch_str, args.print_freq, logger, ) # log the results logger.log( "***{:s}*** TRAIN [{:}] loss = {:.6f}, accuracy-1 = {:.2f}, accuracy-5 = {:.2f}" .format(time_string(), epoch_str, train_loss, train_acc1, train_acc5)) # evaluate the performance if (epoch % args.eval_frequency == 0) or (epoch + 1 == total_epoch): logger.log("-" * 150) valid_loss, valid_acc1, valid_acc5 = valid_func( valid_loader, teacher, network, criterion, optim_config, epoch_str, args.print_freq_eval, logger, ) valid_accuracies[epoch] = valid_acc1 logger.log( "***{:s}*** VALID [{:}] loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f} | Best-Valid-Acc@1={:.2f}, Error@1={:.2f}" .format( time_string(), epoch_str, valid_loss, valid_acc1, valid_acc5, valid_accuracies["best"], 100 - valid_accuracies["best"], )) if valid_acc1 > valid_accuracies["best"]: valid_accuracies["best"] = valid_acc1 find_best = True logger.log( "Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}." .format( epoch, valid_acc1, valid_acc5, 100 - valid_acc1, 100 - valid_acc5, model_best_path, )) num_bytes = (torch.cuda.max_memory_cached( next(network.parameters()).device) * 1.0) logger.log( "[GPU-Memory-Usage on {:} is {:} bytes, {:.2f} KB, {:.2f} MB, {:.2f} GB.]" .format( next(network.parameters()).device, int(num_bytes), num_bytes / 1e3, num_bytes / 1e6, num_bytes / 1e9, )) max_bytes[epoch] = num_bytes if epoch % 10 == 0: torch.cuda.empty_cache() # save checkpoint save_path = save_checkpoint( { "epoch": epoch, "args": deepcopy(args), "max_bytes": deepcopy(max_bytes), "FLOP": flop, "PARAM": param, "valid_accuracies": deepcopy(valid_accuracies), "model-config": model_config._asdict(), "optim-config": optim_config._asdict(), "base-model": base_model.state_dict(), "scheduler": scheduler.state_dict(), "optimizer": optimizer.state_dict(), }, model_base_path, logger, ) if find_best: copy_checkpoint(model_base_path, model_best_path, logger) last_info = save_checkpoint( { "epoch": epoch, "args": deepcopy(args), "last_checkpoint": save_path, }, logger.path("info"), logger, ) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() logger.log("\n" + "-" * 200) logger.log("||| Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G".format( param, flop, flop / 1e3)) logger.log( "Finish training/validation in {:} with Max-GPU-Memory of {:.2f} MB, and save final checkpoint into {:}" .format( convert_secs2time(epoch_time.sum, True), max(v for k, v in max_bytes.items()) / 1e6, logger.path("info"), )) logger.log("-" * 200 + "\n") logger.close()