示例#1
0
def test_func(
    xloader,
    network,
    criterion,
):
    base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter()
    network.eval()

    for step, (base_inputs, base_targets) in enumerate(
        xloader
    ):
        base_targets = base_targets.cuda(non_blocking=True)
        _, logits = network(base_inputs.cuda())
        base_loss = criterion(logits, base_targets)
        base_prec1, base_prec5 = obtain_accuracy(
            logits.data, base_targets.data, topk=(1, 5)
        )
        base_losses.update(base_loss.item(), base_inputs.size(0))
        base_top1.update(base_prec1.item(), base_inputs.size(0))
        base_top5.update(base_prec5.item(), base_inputs.size(0))

    return (
        base_losses.avg,
        base_top1.avg,
        base_top5.avg,
    )
示例#2
0
def pure_evaluate(xloader, network, criterion=torch.nn.CrossEntropyLoss()):
    data_time, batch_time, batch = AverageMeter(), AverageMeter(), None
    losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter()
    latencies, device = [], torch.cuda.current_device()
    network.eval()
    with torch.no_grad():
        end = time.time()
        for i, (inputs, targets) in enumerate(xloader):
            targets = targets.cuda(device=device, non_blocking=True)
            inputs = inputs.cuda(device=device, non_blocking=True)
            data_time.update(time.time() - end)
            # forward
            features, logits = network(inputs)
            loss = criterion(logits, targets)
            batch_time.update(time.time() - end)
            if batch is None or batch == inputs.size(0):
                batch = inputs.size(0)
                latencies.append(batch_time.val - data_time.val)
            # record loss and accuracy
            prec1, prec5 = obtain_accuracy(logits.data,
                                           targets.data,
                                           topk=(1, 5))
            losses.update(loss.item(), inputs.size(0))
            top1.update(prec1.item(), inputs.size(0))
            top5.update(prec5.item(), inputs.size(0))
            end = time.time()
    if len(latencies) > 2:
        latencies = latencies[1:]
    return losses.avg, top1.avg, top5.avg, latencies
示例#3
0
def valid_func(xloader, network, criterion):
    data_time, batch_time = AverageMeter(), AverageMeter()
    arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(
    ), AverageMeter()
    end = time.time()
    with torch.no_grad():
        network.eval()
        for step, (arch_inputs, arch_targets) in enumerate(xloader):
            arch_targets = arch_targets.cuda(non_blocking=True)
            # measure data loading time
            data_time.update(time.time() - end)
            # prediction
            _, logits = network(arch_inputs)
            arch_loss = criterion(logits, arch_targets)
            # record
            arch_prec1, arch_prec5 = obtain_accuracy(logits.data,
                                                     arch_targets.data,
                                                     topk=(1, 5))
            arch_losses.update(arch_loss.item(), arch_inputs.size(0))
            arch_top1.update(arch_prec1.item(), arch_inputs.size(0))
            arch_top5.update(arch_prec5.item(), arch_inputs.size(0))
            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()
    return arch_losses.avg, arch_top1.avg, arch_top5.avg
示例#4
0
def procedure(xloader, network, criterion, scheduler, optimizer, mode: str):
    losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter()
    if mode == "train":
        network.train()
    elif mode == "valid":
        network.eval()
    else:
        raise ValueError("The mode is not right : {:}".format(mode))
    device = torch.cuda.current_device()
    data_time, batch_time, end = AverageMeter(), AverageMeter(), time.time()
    for i, (inputs, targets) in enumerate(xloader):
        if mode == "train":
            scheduler.update(None, 1.0 * i / len(xloader))

        targets = targets.cuda(device=device, non_blocking=True)
        if mode == "train":
            optimizer.zero_grad()
        # forward
        features, logits = network(inputs)
        loss = criterion(logits, targets)
        # backward
        if mode == "train":
            loss.backward()
            optimizer.step()
        # record loss and accuracy
        prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
        losses.update(loss.item(), inputs.size(0))
        top1.update(prec1.item(), inputs.size(0))
        top5.update(prec5.item(), inputs.size(0))
        # count time
        batch_time.update(time.time() - end)
        end = time.time()
    return losses.avg, top1.avg, top5.avg, batch_time.sum
示例#5
0
def train_shared_cnn(
    xloader,
    shared_cnn,
    controller,
    criterion,
    scheduler,
    optimizer,
    epoch_str,
    print_freq,
    logger,
):
    data_time, batch_time = AverageMeter(), AverageMeter()
    losses, top1s, top5s, xend = (
        AverageMeter(),
        AverageMeter(),
        AverageMeter(),
        time.time(),
    )

    shared_cnn.train()
    controller.eval()

    for step, (inputs, targets) in enumerate(xloader):
        scheduler.update(None, 1.0 * step / len(xloader))
        targets = targets.cuda(non_blocking=True)
        # measure data loading time
        data_time.update(time.time() - xend)

        with torch.no_grad():
            _, _, sampled_arch = controller()

        optimizer.zero_grad()
        shared_cnn.module.update_arch(sampled_arch)
        _, logits = shared_cnn(inputs)
        loss = criterion(logits, targets)
        loss.backward()
        torch.nn.utils.clip_grad_norm_(shared_cnn.parameters(), 5)
        optimizer.step()
        # record
        prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
        losses.update(loss.item(), inputs.size(0))
        top1s.update(prec1.item(), inputs.size(0))
        top5s.update(prec5.item(), inputs.size(0))

        # measure elapsed time
        batch_time.update(time.time() - xend)
        xend = time.time()

        if step % print_freq == 0 or step + 1 == len(xloader):
            Sstr = (
                "*Train-Shared-CNN* " + time_string() +
                " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader)))
            Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
                batch_time=batch_time, data_time=data_time)
            Wstr = "[Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format(
                loss=losses, top1=top1s, top5=top5s)
            logger.log(Sstr + " " + Tstr + " " + Wstr)
    return losses.avg, top1s.avg, top5s.avg
示例#6
0
def online_evaluate(
    env,
    meta_model,
    base_model,
    criterion,
    metric,
    args,
    logger,
    save=False,
    easy_adapt=False,
):
    logger.log("Online evaluate: {:}".format(env))
    metric.reset()
    loss_meter = AverageMeter()
    w_containers = dict()
    for idx, (future_time, (future_x, future_y)) in enumerate(env):
        with torch.no_grad():
            meta_model.eval()
            base_model.eval()
            future_time_embed = meta_model.gen_time_embed(
                future_time.to(args.device).view(-1))
            [future_container] = meta_model.gen_model(future_time_embed)
            if save:
                w_containers[idx] = future_container.no_grad_clone()
            future_x, future_y = future_x.to(args.device), future_y.to(
                args.device)
            future_y_hat = base_model.forward_with_container(
                future_x, future_container)
            future_loss = criterion(future_y_hat, future_y)
            loss_meter.update(future_loss.item())
            # accumulate the metric scores
            score = metric(future_y_hat, future_y)
        if easy_adapt:
            meta_model.easy_adapt(future_time.item(), future_time_embed)
            refine, post_refine_loss = False, -1
        else:
            refine, post_refine_loss = meta_model.adapt(
                base_model,
                criterion,
                future_time.item(),
                future_x,
                future_y,
                args.refine_lr,
                args.refine_epochs,
                {
                    "param": future_time_embed,
                    "loss": future_loss.item()
                },
            )
        logger.log(
            "[ONLINE] [{:03d}/{:03d}] loss={:.4f}, score={:.4f}".format(
                idx, len(env), future_loss.item(), score) +
            ", post-loss={:.4f}".format(post_refine_loss if refine else -1))
    meta_model.clear_fixed()
    meta_model.clear_learnt()
    return w_containers, loss_meter.avg, metric.get_info()["score"]
示例#7
0
def search_func(
    xloader, network, criterion, scheduler, w_optimizer, epoch_str, print_freq, logger
):
    data_time, batch_time = AverageMeter(), AverageMeter()
    base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter()
    network.train()
    end = time.time()
    for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(
        xloader
    ):
        scheduler.update(None, 1.0 * step / len(xloader))
        base_targets = base_targets.cuda(non_blocking=True)
        arch_targets = arch_targets.cuda(non_blocking=True)
        # measure data loading time
        data_time.update(time.time() - end)

        # update the weights
        network.module.random_genotype(True)
        w_optimizer.zero_grad()
        _, logits = network(base_inputs)
        base_loss = criterion(logits, base_targets)
        base_loss.backward()
        nn.utils.clip_grad_norm_(network.parameters(), 5)
        w_optimizer.step()
        # record
        base_prec1, base_prec5 = obtain_accuracy(
            logits.data, base_targets.data, topk=(1, 5)
        )
        base_losses.update(base_loss.item(), base_inputs.size(0))
        base_top1.update(base_prec1.item(), base_inputs.size(0))
        base_top5.update(base_prec5.item(), base_inputs.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if step % print_freq == 0 or step + 1 == len(xloader):
            Sstr = (
                "*SEARCH* "
                + time_string()
                + " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader))
            )
            Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
                batch_time=batch_time, data_time=data_time
            )
            Wstr = "Base [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format(
                loss=base_losses, top1=base_top1, top5=base_top5
            )
            logger.log(Sstr + " " + Tstr + " " + Wstr)
    return base_losses.avg, base_top1.avg, base_top5.avg
示例#8
0
def procedure(
    xloader,
    network,
    criterion,
    optimizer,
    metric,
    mode: Text,
    logger_fn: Callable = None,
):
    data_time, batch_time = AverageMeter(), AverageMeter()
    if mode.lower() == "train":
        network.train()
    elif mode.lower() == "valid":
        network.eval()
    else:
        raise ValueError("The mode is not right : {:}".format(mode))

    end = time.time()
    for i, (inputs, targets) in enumerate(xloader):
        # measure data loading time
        data_time.update(time.time() - end)
        # calculate prediction and loss

        if mode == "train":
            optimizer.zero_grad()

        outputs = network(inputs)
        targets = targets.to(get_device(outputs))

        if mode == "train":
            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()

        # record
        with torch.no_grad():
            results = metric(outputs, targets)

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()
    return metric.get_info()
示例#9
0
def main(args):
    assert torch.cuda.is_available(), "CUDA is not available."
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True
    # torch.backends.cudnn.deterministic = True
    # torch.set_num_threads(args.workers)

    prepare_seed(args.rand_seed)
    logger = prepare_logger(args)

    train_data, valid_data, xshape, class_num = get_datasets(
        args.dataset, args.data_path, args.cutout_length)
    train_loader = torch.utils.data.DataLoader(
        train_data,
        batch_size=args.batch_size,
        shuffle=True,
        num_workers=args.workers,
        pin_memory=True,
    )
    valid_loader = torch.utils.data.DataLoader(
        valid_data,
        batch_size=args.batch_size,
        shuffle=False,
        num_workers=args.workers,
        pin_memory=True,
    )
    # get configures
    model_config = load_config(args.model_config, {"class_num": class_num},
                               logger)
    optim_config = load_config(
        args.optim_config,
        {
            "class_num": class_num,
            "KD_alpha": args.KD_alpha,
            "KD_temperature": args.KD_temperature,
        },
        logger,
    )

    # load checkpoint
    teacher_base = load_net_from_checkpoint(args.KD_checkpoint)
    teacher = torch.nn.DataParallel(teacher_base).cuda()

    base_model = obtain_model(model_config)
    flop, param = get_model_infos(base_model, xshape)
    logger.log("Student ====>>>>:\n{:}".format(base_model))
    logger.log("Teacher ====>>>>:\n{:}".format(teacher_base))
    logger.log("model information : {:}".format(base_model.get_message()))
    logger.log("-" * 50)
    logger.log("Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G".format(
        param, flop, flop / 1e3))
    logger.log("-" * 50)
    logger.log("train_data : {:}".format(train_data))
    logger.log("valid_data : {:}".format(valid_data))
    optimizer, scheduler, criterion = get_optim_scheduler(
        base_model.parameters(), optim_config)
    logger.log("optimizer  : {:}".format(optimizer))
    logger.log("scheduler  : {:}".format(scheduler))
    logger.log("criterion  : {:}".format(criterion))

    last_info, model_base_path, model_best_path = (
        logger.path("info"),
        logger.path("model"),
        logger.path("best"),
    )
    network, criterion = torch.nn.DataParallel(
        base_model).cuda(), criterion.cuda()

    if last_info.exists():  # automatically resume from previous checkpoint
        logger.log("=> loading checkpoint of the last-info '{:}' start".format(
            last_info))
        last_info = torch.load(last_info)
        start_epoch = last_info["epoch"] + 1
        checkpoint = torch.load(last_info["last_checkpoint"])
        base_model.load_state_dict(checkpoint["base-model"])
        scheduler.load_state_dict(checkpoint["scheduler"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        valid_accuracies = checkpoint["valid_accuracies"]
        max_bytes = checkpoint["max_bytes"]
        logger.log(
            "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch."
            .format(last_info, start_epoch))
    elif args.resume is not None:
        assert Path(
            args.resume).exists(), "Can not find the resume file : {:}".format(
                args.resume)
        checkpoint = torch.load(args.resume)
        start_epoch = checkpoint["epoch"] + 1
        base_model.load_state_dict(checkpoint["base-model"])
        scheduler.load_state_dict(checkpoint["scheduler"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        valid_accuracies = checkpoint["valid_accuracies"]
        max_bytes = checkpoint["max_bytes"]
        logger.log(
            "=> loading checkpoint from '{:}' start with {:}-th epoch.".format(
                args.resume, start_epoch))
    elif args.init_model is not None:
        assert Path(args.init_model).exists(
        ), "Can not find the initialization file : {:}".format(args.init_model)
        checkpoint = torch.load(args.init_model)
        base_model.load_state_dict(checkpoint["base-model"])
        start_epoch, valid_accuracies, max_bytes = 0, {"best": -1}, {}
        logger.log("=> initialize the model from {:}".format(args.init_model))
    else:
        logger.log("=> do not find the last-info file : {:}".format(last_info))
        start_epoch, valid_accuracies, max_bytes = 0, {"best": -1}, {}

    train_func, valid_func = get_procedures(args.procedure)

    total_epoch = optim_config.epochs + optim_config.warmup
    # Main Training and Evaluation Loop
    start_time = time.time()
    epoch_time = AverageMeter()
    for epoch in range(start_epoch, total_epoch):
        scheduler.update(epoch, 0.0)
        need_time = "Time Left: {:}".format(
            convert_secs2time(epoch_time.avg * (total_epoch - epoch), True))
        epoch_str = "epoch={:03d}/{:03d}".format(epoch, total_epoch)
        LRs = scheduler.get_lr()
        find_best = False

        logger.log(
            "\n***{:s}*** start {:s} {:s}, LR=[{:.6f} ~ {:.6f}], scheduler={:}"
            .format(time_string(), epoch_str, need_time, min(LRs), max(LRs),
                    scheduler))

        # train for one epoch
        train_loss, train_acc1, train_acc5 = train_func(
            train_loader,
            teacher,
            network,
            criterion,
            scheduler,
            optimizer,
            optim_config,
            epoch_str,
            args.print_freq,
            logger,
        )
        # log the results
        logger.log(
            "***{:s}*** TRAIN [{:}] loss = {:.6f}, accuracy-1 = {:.2f}, accuracy-5 = {:.2f}"
            .format(time_string(), epoch_str, train_loss, train_acc1,
                    train_acc5))

        # evaluate the performance
        if (epoch % args.eval_frequency == 0) or (epoch + 1 == total_epoch):
            logger.log("-" * 150)
            valid_loss, valid_acc1, valid_acc5 = valid_func(
                valid_loader,
                teacher,
                network,
                criterion,
                optim_config,
                epoch_str,
                args.print_freq_eval,
                logger,
            )
            valid_accuracies[epoch] = valid_acc1
            logger.log(
                "***{:s}*** VALID [{:}] loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f} | Best-Valid-Acc@1={:.2f}, Error@1={:.2f}"
                .format(
                    time_string(),
                    epoch_str,
                    valid_loss,
                    valid_acc1,
                    valid_acc5,
                    valid_accuracies["best"],
                    100 - valid_accuracies["best"],
                ))
            if valid_acc1 > valid_accuracies["best"]:
                valid_accuracies["best"] = valid_acc1
                find_best = True
                logger.log(
                    "Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}."
                    .format(
                        epoch,
                        valid_acc1,
                        valid_acc5,
                        100 - valid_acc1,
                        100 - valid_acc5,
                        model_best_path,
                    ))
            num_bytes = (torch.cuda.max_memory_cached(
                next(network.parameters()).device) * 1.0)
            logger.log(
                "[GPU-Memory-Usage on {:} is {:} bytes, {:.2f} KB, {:.2f} MB, {:.2f} GB.]"
                .format(
                    next(network.parameters()).device,
                    int(num_bytes),
                    num_bytes / 1e3,
                    num_bytes / 1e6,
                    num_bytes / 1e9,
                ))
            max_bytes[epoch] = num_bytes
        if epoch % 10 == 0:
            torch.cuda.empty_cache()

        # save checkpoint
        save_path = save_checkpoint(
            {
                "epoch": epoch,
                "args": deepcopy(args),
                "max_bytes": deepcopy(max_bytes),
                "FLOP": flop,
                "PARAM": param,
                "valid_accuracies": deepcopy(valid_accuracies),
                "model-config": model_config._asdict(),
                "optim-config": optim_config._asdict(),
                "base-model": base_model.state_dict(),
                "scheduler": scheduler.state_dict(),
                "optimizer": optimizer.state_dict(),
            },
            model_base_path,
            logger,
        )
        if find_best:
            copy_checkpoint(model_base_path, model_best_path, logger)
        last_info = save_checkpoint(
            {
                "epoch": epoch,
                "args": deepcopy(args),
                "last_checkpoint": save_path,
            },
            logger.path("info"),
            logger,
        )

        # measure elapsed time
        epoch_time.update(time.time() - start_time)
        start_time = time.time()

    logger.log("\n" + "-" * 200)
    logger.log("||| Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G".format(
        param, flop, flop / 1e3))
    logger.log(
        "Finish training/validation in {:} with Max-GPU-Memory of {:.2f} MB, and save final checkpoint into {:}"
        .format(
            convert_secs2time(epoch_time.sum, True),
            max(v for k, v in max_bytes.items()) / 1e6,
            logger.path("info"),
        ))
    logger.log("-" * 200 + "\n")
    logger.close()
示例#10
0
def procedure(
    xloader,
    teacher,
    network,
    criterion,
    scheduler,
    optimizer,
    mode,
    config,
    extra_info,
    print_freq,
    logger,
):
    data_time, batch_time, losses, top1, top5 = (
        AverageMeter(),
        AverageMeter(),
        AverageMeter(),
        AverageMeter(),
        AverageMeter(),
    )
    Ttop1, Ttop5 = AverageMeter(), AverageMeter()
    if mode == "train":
        network.train()
    elif mode == "valid":
        network.eval()
    else:
        raise ValueError("The mode is not right : {:}".format(mode))
    teacher.eval()

    logger.log(
        "[{:5s}] config :: auxiliary={:}, KD :: [alpha={:.2f}, temperature={:.2f}]"
        .format(
            mode,
            config.auxiliary if hasattr(config, "auxiliary") else -1,
            config.KD_alpha,
            config.KD_temperature,
        ))
    end = time.time()
    for i, (inputs, targets) in enumerate(xloader):
        if mode == "train":
            scheduler.update(None, 1.0 * i / len(xloader))
        # measure data loading time
        data_time.update(time.time() - end)
        # calculate prediction and loss
        targets = targets.cuda(non_blocking=True)

        if mode == "train":
            optimizer.zero_grad()

        student_f, logits = network(inputs)
        if isinstance(logits, list):
            assert len(
                logits
            ) == 2, "logits must has {:} items instead of {:}".format(
                2, len(logits))
            logits, logits_aux = logits
        else:
            logits, logits_aux = logits, None
        with torch.no_grad():
            teacher_f, teacher_logits = teacher(inputs)

        loss = loss_KD_fn(
            criterion,
            logits,
            teacher_logits,
            student_f,
            teacher_f,
            targets,
            config.KD_alpha,
            config.KD_temperature,
        )
        if config is not None and hasattr(
                config, "auxiliary") and config.auxiliary > 0:
            loss_aux = criterion(logits_aux, targets)
            loss += config.auxiliary * loss_aux

        if mode == "train":
            loss.backward()
            optimizer.step()

        # record
        sprec1, sprec5 = obtain_accuracy(logits.data,
                                         targets.data,
                                         topk=(1, 5))
        losses.update(loss.item(), inputs.size(0))
        top1.update(sprec1.item(), inputs.size(0))
        top5.update(sprec5.item(), inputs.size(0))
        # teacher
        tprec1, tprec5 = obtain_accuracy(teacher_logits.data,
                                         targets.data,
                                         topk=(1, 5))
        Ttop1.update(tprec1.item(), inputs.size(0))
        Ttop5.update(tprec5.item(), inputs.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % print_freq == 0 or (i + 1) == len(xloader):
            Sstr = (
                " {:5s} ".format(mode.upper()) + time_string() +
                " [{:}][{:03d}/{:03d}]".format(extra_info, i, len(xloader)))
            if scheduler is not None:
                Sstr += " {:}".format(scheduler.get_min_info())
            Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
                batch_time=batch_time, data_time=data_time)
            Lstr = "Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})".format(
                loss=losses, top1=top1, top5=top5)
            Lstr += " Teacher : acc@1={:.2f}, acc@5={:.2f}".format(
                Ttop1.avg, Ttop5.avg)
            Istr = "Size={:}".format(list(inputs.size()))
            logger.log(Sstr + " " + Tstr + " " + Lstr + " " + Istr)

    logger.log(" **{:5s}** accuracy drop :: @1={:.2f}, @5={:.2f}".format(
        mode.upper(), Ttop1.avg - top1.avg, Ttop5.avg - top5.avg))
    logger.log(
        " **{mode:5s}** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Loss:{loss:.3f}"
        .format(
            mode=mode.upper(),
            top1=top1,
            top5=top5,
            error1=100 - top1.avg,
            error5=100 - top5.avg,
            loss=losses.avg,
        ))
    return losses.avg, top1.avg, top5.avg
示例#11
0
def meta_train_procedure(base_model, meta_model, criterion, xenv, args,
                         logger):
    base_model.train()
    meta_model.train()
    optimizer = torch.optim.Adam(
        meta_model.get_parameters(True, True, True),
        lr=args.lr,
        weight_decay=args.weight_decay,
        amsgrad=True,
    )
    logger.log("Pre-train the meta-model")
    logger.log("Using the optimizer: {:}".format(optimizer))

    meta_model.set_best_dir(logger.path(None) / "ckps-pretrain-v2")
    final_best_name = "final-pretrain-{:}.pth".format(args.rand_seed)
    if meta_model.has_best(final_best_name):
        meta_model.load_best(final_best_name)
        logger.log(
            "Directly load the best model from {:}".format(final_best_name))
        return

    total_indexes = list(range(meta_model.meta_length))
    meta_model.set_best_name("pretrain-{:}.pth".format(args.rand_seed))
    last_success_epoch, early_stop_thresh = 0, args.pretrain_early_stop_thresh
    per_epoch_time, start_time = AverageMeter(), time.time()
    device = args.device
    for iepoch in range(args.epochs):
        left_time = "Time Left: {:}".format(
            convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch),
                              True))
        optimizer.zero_grad()

        generated_time_embeds = meta_model.gen_time_embed(
            meta_model.meta_timestamps)

        batch_indexes = random.choices(total_indexes, k=args.meta_batch)

        raw_time_steps = meta_model.meta_timestamps[batch_indexes]

        regularization_loss = F.l1_loss(generated_time_embeds,
                                        meta_model.super_meta_embed,
                                        reduction="mean")
        # future loss
        total_future_losses, total_present_losses = [], []
        future_containers = meta_model.gen_model(
            generated_time_embeds[batch_indexes])
        present_containers = meta_model.gen_model(
            meta_model.super_meta_embed[batch_indexes])
        for ibatch, time_step in enumerate(raw_time_steps.cpu().tolist()):
            _, (inputs, targets) = xenv(time_step)
            inputs, targets = inputs.to(device), targets.to(device)

            predictions = base_model.forward_with_container(
                inputs, future_containers[ibatch])
            total_future_losses.append(criterion(predictions, targets))

            predictions = base_model.forward_with_container(
                inputs, present_containers[ibatch])
            total_present_losses.append(criterion(predictions, targets))

        with torch.no_grad():
            meta_std = torch.stack(total_future_losses).std().item()
        loss_future = torch.stack(total_future_losses).mean()
        loss_present = torch.stack(total_present_losses).mean()
        total_loss = loss_future + loss_present + regularization_loss
        total_loss.backward()
        optimizer.step()
        # success
        success, best_score = meta_model.save_best(-total_loss.item())
        logger.log(
            "{:} [META {:04d}/{:}] loss : {:.4f} +- {:.4f} = {:.4f} + {:.4f} + {:.4f}"
            .format(
                time_string(),
                iepoch,
                args.epochs,
                total_loss.item(),
                meta_std,
                loss_future.item(),
                loss_present.item(),
                regularization_loss.item(),
            ) + ", batch={:}".format(len(total_future_losses)) +
            ", success={:}, best={:.4f}".format(success, -best_score) +
            ", LS={:}/{:}".format(iepoch -
                                  last_success_epoch, early_stop_thresh) +
            ", {:}".format(left_time))
        if success:
            last_success_epoch = iepoch
        if iepoch - last_success_epoch >= early_stop_thresh:
            logger.log("Early stop the pre-training at {:}".format(iepoch))
            break
        per_epoch_time.update(time.time() - start_time)
        start_time = time.time()
    meta_model.load_best()
    # save to the final model
    meta_model.set_best_name(final_best_name)
    success, _ = meta_model.save_best(best_score + 1e-6)
    assert success
    logger.log("Save the best model into {:}".format(final_best_name))
示例#12
0
def main(args):
    prepare_seed(args.rand_seed)
    logger = prepare_logger(args)
    train_env = get_synthetic_env(mode="train", version=args.env_version)
    valid_env = get_synthetic_env(mode="valid", version=args.env_version)
    trainval_env = get_synthetic_env(mode="trainval", version=args.env_version)
    test_env = get_synthetic_env(mode="test", version=args.env_version)
    all_env = get_synthetic_env(mode=None, version=args.env_version)
    logger.log("The training enviornment: {:}".format(train_env))
    logger.log("The validation enviornment: {:}".format(valid_env))
    logger.log("The trainval enviornment: {:}".format(trainval_env))
    logger.log("The total enviornment: {:}".format(all_env))
    logger.log("The test enviornment: {:}".format(test_env))
    model_kwargs = dict(
        config=dict(model_type="norm_mlp"),
        input_dim=all_env.meta_info["input_dim"],
        output_dim=all_env.meta_info["output_dim"],
        hidden_dims=[args.hidden_dim] * 2,
        act_cls="relu",
        norm_cls="layer_norm_1d",
    )

    model = get_model(**model_kwargs)
    model = model.to(args.device)
    if all_env.meta_info["task"] == "regression":
        criterion = torch.nn.MSELoss()
        metric_cls = MSEMetric
    elif all_env.meta_info["task"] == "classification":
        criterion = torch.nn.CrossEntropyLoss()
        metric_cls = Top1AccMetric
    else:
        raise ValueError(
            "This task ({:}) is not supported.".format(all_env.meta_info["task"])
        )

    maml = MAML(
        model, criterion, args.epochs, args.meta_lr, args.inner_lr, args.inner_step
    )

    # meta-training
    last_success_epoch = 0
    per_epoch_time, start_time = AverageMeter(), time.time()
    for iepoch in range(args.epochs):
        need_time = "Time Left: {:}".format(
            convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
        )
        head_str = (
            "[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
            + need_time
        )

        maml.zero_grad()
        meta_losses = []
        for ibatch in range(args.meta_batch):
            future_idx = random.randint(0, len(trainval_env) - 1)
            future_t, (future_x, future_y) = trainval_env[future_idx]
            # -->>
            seq_times = trainval_env.get_seq_times(future_idx, args.seq_length)
            _, (allxs, allys) = trainval_env.seq_call(seq_times)
            allxs, allys = allxs.view(-1, allxs.shape[-1]), allys.view(-1, 1)
            if trainval_env.meta_info["task"] == "classification":
                allys = allys.view(-1)
            historical_x, historical_y = allxs.to(args.device), allys.to(args.device)
            future_container = maml.adapt(historical_x, historical_y)

            future_x, future_y = future_x.to(args.device), future_y.to(args.device)
            future_y_hat = maml.predict(future_x, future_container)
            future_loss = maml.criterion(future_y_hat, future_y)
            meta_losses.append(future_loss)
        meta_loss = torch.stack(meta_losses).mean()
        meta_loss.backward()
        maml.step()

        logger.log(head_str + " meta-loss: {:.4f}".format(meta_loss.item()))
        success, best_score = maml.save_best(-meta_loss.item())
        if success:
            logger.log("Achieve the best with best_score = {:.3f}".format(best_score))
            save_checkpoint(maml.state_dict(), logger.path("model"), logger)
            last_success_epoch = iepoch
        if iepoch - last_success_epoch >= args.early_stop_thresh:
            logger.log("Early stop at {:}".format(iepoch))
            break

        per_epoch_time.update(time.time() - start_time)
        start_time = time.time()

    # meta-test
    maml.load_best()

    def finetune(index):
        seq_times = test_env.get_seq_times(index, args.seq_length)
        _, (allxs, allys) = test_env.seq_call(seq_times)
        allxs, allys = allxs.view(-1, allxs.shape[-1]), allys.view(-1, 1)
        if test_env.meta_info["task"] == "classification":
            allys = allys.view(-1)
        historical_x, historical_y = allxs.to(args.device), allys.to(args.device)
        future_container = maml.adapt(historical_x, historical_y)

        historical_y_hat = maml.predict(historical_x, future_container)
        train_metric = metric_cls(True)
        # model.analyze_weights()
        with torch.no_grad():
            train_metric(historical_y_hat, historical_y)
        train_results = train_metric.get_info()
        return train_results, future_container

    metric = metric_cls(True)
    per_timestamp_time, start_time = AverageMeter(), time.time()
    for idx, (future_time, (future_x, future_y)) in enumerate(test_env):

        need_time = "Time Left: {:}".format(
            convert_secs2time(per_timestamp_time.avg * (len(test_env) - idx), True)
        )
        logger.log(
            "[{:}]".format(time_string())
            + " [{:04d}/{:04d}]".format(idx, len(test_env))
            + " "
            + need_time
        )

        # build optimizer
        train_results, future_container = finetune(idx)

        future_x, future_y = future_x.to(args.device), future_y.to(args.device)
        future_y_hat = maml.predict(future_x, future_container)
        future_loss = criterion(future_y_hat, future_y)
        metric(future_y_hat, future_y)
        log_str = (
            "[{:}]".format(time_string())
            + " [{:04d}/{:04d}]".format(idx, len(test_env))
            + " train-score: {:.5f}, eval-score: {:.5f}".format(
                train_results["score"], metric.get_info()["score"]
            )
        )
        logger.log(log_str)
        logger.log("")
        per_timestamp_time.update(time.time() - start_time)
        start_time = time.time()

    logger.log("-" * 200 + "\n")
    logger.close()
示例#13
0
def simplify(save_dir, meta_file, basestr, target_dir):
    meta_infos = torch.load(meta_file, map_location="cpu")
    meta_archs = meta_infos["archs"]  # a list of architecture strings
    meta_num_archs = meta_infos["total"]
    meta_max_node = meta_infos["max_node"]
    assert meta_num_archs == len(
        meta_archs), "invalid number of archs : {:} vs {:}".format(
            meta_num_archs, len(meta_archs))

    sub_model_dirs = sorted(list(save_dir.glob("*-*-{:}".format(basestr))))
    print("{:} find {:} directories used to save checkpoints".format(
        time_string(), len(sub_model_dirs)))

    subdir2archs, num_evaluated_arch = collections.OrderedDict(), 0
    num_seeds = defaultdict(lambda: 0)
    for index, sub_dir in enumerate(sub_model_dirs):
        xcheckpoints = list(sub_dir.glob("arch-*-seed-*.pth"))
        arch_indexes = set()
        for checkpoint in xcheckpoints:
            temp_names = checkpoint.name.split("-")
            assert (len(temp_names) == 4 and temp_names[0] == "arch"
                    and temp_names[2]
                    == "seed"), "invalid checkpoint name : {:}".format(
                        checkpoint.name)
            arch_indexes.add(temp_names[1])
        subdir2archs[sub_dir] = sorted(list(arch_indexes))
        num_evaluated_arch += len(arch_indexes)
        # count number of seeds for each architecture
        for arch_index in arch_indexes:
            num_seeds[len(
                list(sub_dir.glob(
                    "arch-{:}-seed-*.pth".format(arch_index))))] += 1
    print(
        "{:} There are {:5d} architectures that have been evaluated ({:} in total)."
        .format(time_string(), num_evaluated_arch, meta_num_archs))
    for key in sorted(list(num_seeds.keys())):
        print(
            "{:} There are {:5d} architectures that are evaluated {:} times.".
            format(time_string(), num_seeds[key], key))

    dataloader_dict = GET_DataLoaders(6)

    to_save_simply = save_dir / "simplifies"
    to_save_allarc = save_dir / "simplifies" / "architectures"
    if not to_save_simply.exists():
        to_save_simply.mkdir(parents=True, exist_ok=True)
    if not to_save_allarc.exists():
        to_save_allarc.mkdir(parents=True, exist_ok=True)

    assert (save_dir /
            target_dir) in subdir2archs, "can not find {:}".format(target_dir)
    arch2infos, datasets = {}, (
        "cifar10-valid",
        "cifar10",
        "cifar100",
        "ImageNet16-120",
    )
    evaluated_indexes = set()
    target_directory = save_dir / target_dir
    target_less_dir = save_dir / "{:}-LESS".format(target_dir)
    arch_indexes = subdir2archs[target_directory]
    num_seeds = defaultdict(lambda: 0)
    end_time = time.time()
    arch_time = AverageMeter()
    for idx, arch_index in enumerate(arch_indexes):
        checkpoints = list(
            target_directory.glob("arch-{:}-seed-*.pth".format(arch_index)))
        ckps_less = list(
            target_less_dir.glob("arch-{:}-seed-*.pth".format(arch_index)))
        # create the arch info for each architecture
        try:
            arch_info_full = account_one_arch(
                arch_index,
                meta_archs[int(arch_index)],
                checkpoints,
                datasets,
                dataloader_dict,
            )
            arch_info_less = account_one_arch(
                arch_index,
                meta_archs[int(arch_index)],
                ckps_less,
                ["cifar10-valid"],
                dataloader_dict,
            )
            num_seeds[len(checkpoints)] += 1
        except:
            print("Loading {:} failed, : {:}".format(arch_index, checkpoints))
            continue
        assert (int(arch_index) not in evaluated_indexes
                ), "conflict arch-index : {:}".format(arch_index)
        assert (0 <= int(arch_index) < len(meta_archs)
                ), "invalid arch-index {:} (not found in meta_archs)".format(
                    arch_index)
        arch_info = {"full": arch_info_full, "less": arch_info_less}
        evaluated_indexes.add(int(arch_index))
        arch2infos[int(arch_index)] = arch_info
        torch.save(
            {
                "full": arch_info_full.state_dict(),
                "less": arch_info_less.state_dict()
            },
            to_save_allarc / "{:}-FULL.pth".format(arch_index),
        )
        arch_info["full"].clear_params()
        arch_info["less"].clear_params()
        torch.save(
            {
                "full": arch_info_full.state_dict(),
                "less": arch_info_less.state_dict()
            },
            to_save_allarc / "{:}-SIMPLE.pth".format(arch_index),
        )
        # measure elapsed time
        arch_time.update(time.time() - end_time)
        end_time = time.time()
        need_time = "{:}".format(
            convert_secs2time(arch_time.avg * (len(arch_indexes) - idx - 1),
                              True))
        print("{:} {:} [{:03d}/{:03d}] : {:} still need {:}".format(
            time_string(), target_dir, idx, len(arch_indexes), arch_index,
            need_time))
    # measure time
    xstrs = [
        "{:}:{:03d}".format(key, num_seeds[key])
        for key in sorted(list(num_seeds.keys()))
    ]
    print("{:} {:} done : {:}".format(time_string(), target_dir, xstrs))
    final_infos = {
        "meta_archs": meta_archs,
        "total_archs": meta_num_archs,
        "basestr": basestr,
        "arch2infos": arch2infos,
        "evaluated_indexes": evaluated_indexes,
    }
    save_file_name = to_save_simply / "{:}.pth".format(target_dir)
    torch.save(final_infos, save_file_name)
    print("Save {:} / {:} architecture results into {:}.".format(
        len(evaluated_indexes), meta_num_archs, save_file_name))
示例#14
0
def search_func(
    xloader,
    network,
    global_network,
    criterion,
    scheduler,
    w_optimizer,
    a_optimizer,
    epoch_str,
    print_freq,
    logger,
    local_epoch
):
    # network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda()
    data_time, batch_time = AverageMeter(), AverageMeter()
    base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter()
    arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
    network.train()
    end = time.time()

    for _ in range(local_epoch):
        for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(
            xloader
        ):
            scheduler.update(None, 1.0 * step / len(xloader))
            base_targets = base_targets.cuda(non_blocking=True)
            arch_targets = arch_targets.cuda(non_blocking=True)
            # measure data loading time
            data_time.update(time.time() - end)

            # update the weights
            w_optimizer.zero_grad()
            _, logits = network(base_inputs.cuda())
            base_loss = criterion(logits, base_targets)
            base_loss.backward()
            torch.nn.utils.clip_grad_norm_(network.parameters(), 5)

            if args.baseline == 'dl':
                w_optimizer.step(global_network.get_weights())
            else:
                w_optimizer.step()
            # record
            base_prec1, base_prec5 = obtain_accuracy(
                logits.data, base_targets.data, topk=(1, 5)
            )
            base_losses.update(base_loss.item(), base_inputs.size(0))
            base_top1.update(base_prec1.item(), base_inputs.size(0))
            base_top5.update(base_prec5.item(), base_inputs.size(0))

            # update the architecture-weight
            a_optimizer.zero_grad()
            _, logits = network(arch_inputs.cuda())
            arch_loss = criterion(logits, arch_targets)
            arch_loss.backward()
            a_optimizer.step()
            # record
            arch_prec1, arch_prec5 = obtain_accuracy(
                logits.data, arch_targets.data, topk=(1, 5)
            )
            arch_losses.update(arch_loss.item(), arch_inputs.size(0))
            arch_top1.update(arch_prec1.item(), arch_inputs.size(0))
            arch_top5.update(arch_prec5.item(), arch_inputs.size(0))

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            if step % print_freq == 0 or step + 1 == len(xloader):
                Sstr = (
                    "*SEARCH* "
                    + time_string()
                    + " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader))
                )
                Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
                    batch_time=batch_time, data_time=data_time
                )
                Wstr = "Base [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format(
                    loss=base_losses, top1=base_top1, top5=base_top5
                )
                Astr = "Arch [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format(
                    loss=arch_losses, top1=arch_top1, top5=arch_top5
                )
                logger.log(Sstr + " " + Tstr + " " + Wstr + " " + Astr)
    return (
        base_losses.avg,
        base_top1.avg,
        base_top5.avg,
        arch_losses.avg,
        arch_top1.avg,
        arch_top5.avg,
        network.state_dict()
    )
示例#15
0
def train_controller(
    xloader,
    shared_cnn,
    controller,
    criterion,
    optimizer,
    config,
    epoch_str,
    print_freq,
    logger,
):
    # config. (containing some necessary arg)
    #   baseline: The baseline score (i.e. average val_acc) from the previous epoch
    data_time, batch_time = AverageMeter(), AverageMeter()
    (
        GradnormMeter,
        LossMeter,
        ValAccMeter,
        EntropyMeter,
        BaselineMeter,
        RewardMeter,
        xend,
    ) = (
        AverageMeter(),
        AverageMeter(),
        AverageMeter(),
        AverageMeter(),
        AverageMeter(),
        AverageMeter(),
        time.time(),
    )

    shared_cnn.eval()
    controller.train()
    controller.zero_grad()
    # for step, (inputs, targets) in enumerate(xloader):
    loader_iter = iter(xloader)
    for step in range(config.ctl_train_steps * config.ctl_num_aggre):
        try:
            inputs, targets = next(loader_iter)
        except:
            loader_iter = iter(xloader)
            inputs, targets = next(loader_iter)
        targets = targets.cuda(non_blocking=True)
        # measure data loading time
        data_time.update(time.time() - xend)

        log_prob, entropy, sampled_arch = controller()
        with torch.no_grad():
            shared_cnn.module.update_arch(sampled_arch)
            _, logits = shared_cnn(inputs)
            val_top1, val_top5 = obtain_accuracy(logits.data,
                                                 targets.data,
                                                 topk=(1, 5))
            val_top1 = val_top1.view(-1) / 100
        reward = val_top1 + config.ctl_entropy_w * entropy
        if config.baseline is None:
            baseline = val_top1
        else:
            baseline = config.baseline - (1 - config.ctl_bl_dec) * (
                config.baseline - reward)

        loss = -1 * log_prob * (reward - baseline)

        # account
        RewardMeter.update(reward.item())
        BaselineMeter.update(baseline.item())
        ValAccMeter.update(val_top1.item() * 100)
        LossMeter.update(loss.item())
        EntropyMeter.update(entropy.item())

        # Average gradient over controller_num_aggregate samples
        loss = loss / config.ctl_num_aggre
        loss.backward(retain_graph=True)

        # measure elapsed time
        batch_time.update(time.time() - xend)
        xend = time.time()
        if (step + 1) % config.ctl_num_aggre == 0:
            grad_norm = torch.nn.utils.clip_grad_norm_(controller.parameters(),
                                                       5.0)
            GradnormMeter.update(grad_norm)
            optimizer.step()
            controller.zero_grad()

        if step % print_freq == 0:
            Sstr = ("*Train-Controller* " + time_string() +
                    " [{:}][{:03d}/{:03d}]".format(
                        epoch_str, step,
                        config.ctl_train_steps * config.ctl_num_aggre))
            Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
                batch_time=batch_time, data_time=data_time)
            Wstr = "[Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Reward {reward.val:.2f} ({reward.avg:.2f})] Baseline {basel.val:.2f} ({basel.avg:.2f})".format(
                loss=LossMeter,
                top1=ValAccMeter,
                reward=RewardMeter,
                basel=BaselineMeter,
            )
            Estr = "Entropy={:.4f} ({:.4f})".format(EntropyMeter.val,
                                                    EntropyMeter.avg)
            logger.log(Sstr + " " + Tstr + " " + Wstr + " " + Estr)

    return (
        LossMeter.avg,
        ValAccMeter.avg,
        BaselineMeter.avg,
        RewardMeter.avg,
        baseline.item(),
    )
示例#16
0
def search_train_v2(
    search_loader,
    network,
    criterion,
    scheduler,
    base_optimizer,
    arch_optimizer,
    optim_config,
    extra_info,
    print_freq,
    logger,
):
    data_time, batch_time = AverageMeter(), AverageMeter()
    base_losses, arch_losses, top1, top5 = (
        AverageMeter(),
        AverageMeter(),
        AverageMeter(),
        AverageMeter(),
    )
    arch_cls_losses, arch_flop_losses = AverageMeter(), AverageMeter()
    epoch_str, flop_need, flop_weight, flop_tolerant = (
        extra_info["epoch-str"],
        extra_info["FLOP-exp"],
        extra_info["FLOP-weight"],
        extra_info["FLOP-tolerant"],
    )

    network.train()
    logger.log(
        "[Search] : {:}, FLOP-Require={:.2f} MB, FLOP-WEIGHT={:.2f}".format(
            epoch_str, flop_need, flop_weight
        )
    )
    end = time.time()
    network.apply(change_key("search_mode", "search"))
    for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(
        search_loader
    ):
        scheduler.update(None, 1.0 * step / len(search_loader))
        # calculate prediction and loss
        base_targets = base_targets.cuda(non_blocking=True)
        arch_targets = arch_targets.cuda(non_blocking=True)
        # measure data loading time
        data_time.update(time.time() - end)

        # update the weights
        base_optimizer.zero_grad()
        logits, expected_flop = network(base_inputs)
        base_loss = criterion(logits, base_targets)
        base_loss.backward()
        base_optimizer.step()
        # record
        prec1, prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5))
        base_losses.update(base_loss.item(), base_inputs.size(0))
        top1.update(prec1.item(), base_inputs.size(0))
        top5.update(prec5.item(), base_inputs.size(0))

        # update the architecture
        arch_optimizer.zero_grad()
        logits, expected_flop = network(arch_inputs)
        flop_cur = network.module.get_flop("genotype", None, None)
        flop_loss, flop_loss_scale = get_flop_loss(
            expected_flop, flop_cur, flop_need, flop_tolerant
        )
        acls_loss = criterion(logits, arch_targets)
        arch_loss = acls_loss + flop_loss * flop_weight
        arch_loss.backward()
        arch_optimizer.step()

        # record
        arch_losses.update(arch_loss.item(), arch_inputs.size(0))
        arch_flop_losses.update(flop_loss_scale, arch_inputs.size(0))
        arch_cls_losses.update(acls_loss.item(), arch_inputs.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()
        if step % print_freq == 0 or (step + 1) == len(search_loader):
            Sstr = (
                "**TRAIN** "
                + time_string()
                + " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(search_loader))
            )
            Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
                batch_time=batch_time, data_time=data_time
            )
            Lstr = "Base-Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})".format(
                loss=base_losses, top1=top1, top5=top5
            )
            Vstr = "Acls-loss {aloss.val:.3f} ({aloss.avg:.3f}) FLOP-Loss {floss.val:.3f} ({floss.avg:.3f}) Arch-Loss {loss.val:.3f} ({loss.avg:.3f})".format(
                aloss=arch_cls_losses, floss=arch_flop_losses, loss=arch_losses
            )
            logger.log(Sstr + " " + Tstr + " " + Lstr + " " + Vstr)
            # num_bytes = torch.cuda.max_memory_allocated( next(network.parameters()).device ) * 1.0
            # logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Vstr + ' GPU={:.2f}MB'.format(num_bytes/1e6))
            # Istr = 'Bsz={:} Asz={:}'.format(list(base_inputs.size()), list(arch_inputs.size()))
            # logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Vstr + ' ' + Istr)
            # print(network.module.get_arch_info())
            # print(network.module.width_attentions[0])
            # print(network.module.width_attentions[1])

    logger.log(
        " **TRAIN** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Base-Loss:{baseloss:.3f}, Arch-Loss={archloss:.3f}".format(
            top1=top1,
            top5=top5,
            error1=100 - top1.avg,
            error5=100 - top5.avg,
            baseloss=base_losses.avg,
            archloss=arch_losses.avg,
        )
    )
    return base_losses.avg, arch_losses.avg, top1.avg, top5.avg
示例#17
0
def main(args):
    prepare_seed(args.rand_seed)
    logger = prepare_logger(args)
    env = get_synthetic_env(mode="test", version=args.env_version)
    model_kwargs = dict(
        config=dict(model_type="norm_mlp"),
        input_dim=env.meta_info["input_dim"],
        output_dim=env.meta_info["output_dim"],
        hidden_dims=[args.hidden_dim] * 2,
        act_cls="relu",
        norm_cls="layer_norm_1d",
    )
    logger.log("The total enviornment: {:}".format(env))
    w_containers = dict()

    if env.meta_info["task"] == "regression":
        criterion = torch.nn.MSELoss()
        metric_cls = MSEMetric
    elif env.meta_info["task"] == "classification":
        criterion = torch.nn.CrossEntropyLoss()
        metric_cls = Top1AccMetric
    else:
        raise ValueError("This task ({:}) is not supported.".format(
            all_env.meta_info["task"]))

    def finetune(index):
        seq_times = env.get_seq_times(index, args.seq_length)
        _, (allxs, allys) = env.seq_call(seq_times)
        allxs, allys = allxs.view(-1, allxs.shape[-1]), allys.view(-1, 1)
        if env.meta_info["task"] == "classification":
            allys = allys.view(-1)
        historical_x, historical_y = allxs.to(args.device), allys.to(
            args.device)
        model = get_model(**model_kwargs)
        model = model.to(args.device)

        optimizer = torch.optim.Adam(model.parameters(),
                                     lr=args.init_lr,
                                     amsgrad=True)
        lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
            optimizer,
            milestones=[
                int(args.epochs * 0.25),
                int(args.epochs * 0.5),
                int(args.epochs * 0.75),
            ],
            gamma=0.3,
        )

        train_metric = metric_cls(True)
        best_loss, best_param = None, None
        for _iepoch in range(args.epochs):
            preds = model(historical_x)
            optimizer.zero_grad()
            loss = criterion(preds, historical_y)
            loss.backward()
            optimizer.step()
            lr_scheduler.step()
            # save best
            if best_loss is None or best_loss > loss.item():
                best_loss = loss.item()
                best_param = copy.deepcopy(model.state_dict())
        model.load_state_dict(best_param)
        # model.analyze_weights()
        with torch.no_grad():
            train_metric(preds, historical_y)
        train_results = train_metric.get_info()
        return train_results, model

    metric = metric_cls(True)
    per_timestamp_time, start_time = AverageMeter(), time.time()
    for idx, (future_time, (future_x, future_y)) in enumerate(env):

        need_time = "Time Left: {:}".format(
            convert_secs2time(per_timestamp_time.avg * (len(env) - idx), True))
        logger.log("[{:}]".format(time_string()) +
                   " [{:04d}/{:04d}]".format(idx, len(env)) + " " + need_time)
        # train the same data
        train_results, model = finetune(idx)

        # build optimizer
        xmetric = ComposeMetric(metric_cls(True), SaveMetric())
        future_x, future_y = future_x.to(args.device), future_y.to(args.device)
        future_y_hat = model(future_x)
        future_loss = criterion(future_y_hat, future_y)
        metric(future_y_hat, future_y)
        log_str = ("[{:}]".format(time_string()) +
                   " [{:04d}/{:04d}]".format(idx, len(env)) +
                   " train-score: {:.5f}, eval-score: {:.5f}".format(
                       train_results["score"],
                       metric.get_info()["score"]))
        logger.log(log_str)
        logger.log("")
        per_timestamp_time.update(time.time() - start_time)
        start_time = time.time()

    save_checkpoint(
        {"w_containers": w_containers},
        logger.path(None) / "final-ckp.pth",
        logger,
    )

    logger.log("-" * 200 + "\n")
    logger.close()
    return metric.get_info()["score"]
示例#18
0
def search_func(
    xloader,
    network,
    criterion,
    scheduler,
    w_optimizer,
    a_optimizer,
    epoch_str,
    print_freq,
    logger,
):
    data_time, batch_time = AverageMeter(), AverageMeter()
    base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(
    ), AverageMeter()
    arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(
    ), AverageMeter()
    end = time.time()
    network.train()
    for step, (base_inputs, base_targets, arch_inputs,
               arch_targets) in enumerate(xloader):
        scheduler.update(None, 1.0 * step / len(xloader))
        base_targets = base_targets.cuda(non_blocking=True)
        arch_targets = arch_targets.cuda(non_blocking=True)
        # measure data loading time
        data_time.update(time.time() - end)

        # update the weights
        sampled_arch = network.module.dync_genotype(True)
        network.module.set_cal_mode("dynamic", sampled_arch)
        # network.module.set_cal_mode( 'urs' )
        network.zero_grad()
        _, logits = network(base_inputs)
        base_loss = criterion(logits, base_targets)
        base_loss.backward()
        w_optimizer.step()
        # record
        base_prec1, base_prec5 = obtain_accuracy(logits.data,
                                                 base_targets.data,
                                                 topk=(1, 5))
        base_losses.update(base_loss.item(), base_inputs.size(0))
        base_top1.update(base_prec1.item(), base_inputs.size(0))
        base_top5.update(base_prec5.item(), base_inputs.size(0))

        # update the architecture-weight
        network.module.set_cal_mode("joint")
        network.zero_grad()
        _, logits = network(arch_inputs)
        arch_loss = criterion(logits, arch_targets)
        arch_loss.backward()
        a_optimizer.step()
        # record
        arch_prec1, arch_prec5 = obtain_accuracy(logits.data,
                                                 arch_targets.data,
                                                 topk=(1, 5))
        arch_losses.update(arch_loss.item(), arch_inputs.size(0))
        arch_top1.update(arch_prec1.item(), arch_inputs.size(0))
        arch_top5.update(arch_prec5.item(), arch_inputs.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if step % print_freq == 0 or step + 1 == len(xloader):
            Sstr = (
                "*SEARCH* " + time_string() +
                " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader)))
            Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
                batch_time=batch_time, data_time=data_time)
            Wstr = "Base [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format(
                loss=base_losses, top1=base_top1, top5=base_top5)
            Astr = "Arch [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format(
                loss=arch_losses, top1=arch_top1, top5=arch_top5)
            logger.log(Sstr + " " + Tstr + " " + Wstr + " " + Astr)
            # print (nn.functional.softmax(network.module.arch_parameters, dim=-1))
            # print (network.module.arch_parameters)
    return (
        base_losses.avg,
        base_top1.avg,
        base_top5.avg,
        arch_losses.avg,
        arch_top1.avg,
        arch_top5.avg,
    )
示例#19
0
def main(args):
    logger, model_kwargs = lfna_setup(args)

    w_containers = dict()

    per_timestamp_time, start_time = AverageMeter(), time.time()
    for idx in range(args.prev_time, env_info["total"]):

        need_time = "Time Left: {:}".format(
            convert_secs2time(per_timestamp_time.avg * (env_info["total"] - idx), True)
        )
        logger.log(
            "[{:}]".format(time_string())
            + " [{:04d}/{:04d}]".format(idx, env_info["total"])
            + " "
            + need_time
        )
        # train the same data
        historical_x = env_info["{:}-x".format(idx - args.prev_time)]
        historical_y = env_info["{:}-y".format(idx - args.prev_time)]
        # build model
        model = get_model(**model_kwargs)
        print(model)
        # build optimizer
        optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True)
        criterion = torch.nn.MSELoss()
        lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
            optimizer,
            milestones=[
                int(args.epochs * 0.25),
                int(args.epochs * 0.5),
                int(args.epochs * 0.75),
            ],
            gamma=0.3,
        )
        train_metric = MSEMetric()
        best_loss, best_param = None, None
        for _iepoch in range(args.epochs):
            preds = model(historical_x)
            optimizer.zero_grad()
            loss = criterion(preds, historical_y)
            loss.backward()
            optimizer.step()
            lr_scheduler.step()
            # save best
            if best_loss is None or best_loss > loss.item():
                best_loss = loss.item()
                best_param = copy.deepcopy(model.state_dict())
        model.load_state_dict(best_param)
        model.analyze_weights()
        with torch.no_grad():
            train_metric(preds, historical_y)
        train_results = train_metric.get_info()

        metric = ComposeMetric(MSEMetric(), SaveMetric())
        eval_dataset = torch.utils.data.TensorDataset(
            env_info["{:}-x".format(idx)], env_info["{:}-y".format(idx)]
        )
        eval_loader = torch.utils.data.DataLoader(
            eval_dataset, batch_size=args.batch_size, shuffle=False, num_workers=0
        )
        results = basic_eval_fn(eval_loader, model, metric, logger)
        log_str = (
            "[{:}]".format(time_string())
            + " [{:04d}/{:04d}]".format(idx, env_info["total"])
            + " train-mse: {:.5f}, eval-mse: {:.5f}".format(
                train_results["mse"], results["mse"]
            )
        )
        logger.log(log_str)

        save_path = logger.path(None) / "{:04d}-{:04d}.pth".format(
            idx, env_info["total"]
        )
        w_containers[idx] = model.get_w_container().no_grad_clone()
        save_checkpoint(
            {
                "model_state_dict": model.state_dict(),
                "model": model,
                "index": idx,
                "timestamp": env_info["{:}-timestamp".format(idx)],
            },
            save_path,
            logger,
        )
        logger.log("")
        per_timestamp_time.update(time.time() - start_time)
        start_time = time.time()

    save_checkpoint(
        {"w_containers": w_containers},
        logger.path(None) / "final-ckp.pth",
        logger,
    )

    logger.log("-" * 200 + "\n")
    logger.close()
示例#20
0
def main(args):
    prepare_seed(args.rand_seed)
    logger = prepare_logger(args)
    env = get_synthetic_env(mode=None, version=args.env_version)
    model_kwargs = dict(
        config=dict(model_type="norm_mlp"),
        input_dim=env.meta_info["input_dim"],
        output_dim=env.meta_info["output_dim"],
        hidden_dims=[args.hidden_dim] * 2,
        act_cls="relu",
        norm_cls="layer_norm_1d",
    )
    logger.log("The total enviornment: {:}".format(env))
    w_containers = dict()

    if env.meta_info["task"] == "regression":
        criterion = torch.nn.MSELoss()
        metric_cls = MSEMetric
    elif env.meta_info["task"] == "classification":
        criterion = torch.nn.CrossEntropyLoss()
        metric_cls = Top1AccMetric
    else:
        raise ValueError("This task ({:}) is not supported.".format(
            all_env.meta_info["task"]))

    per_timestamp_time, start_time = AverageMeter(), time.time()
    for idx, (future_time, (future_x, future_y)) in enumerate(env):

        need_time = "Time Left: {:}".format(
            convert_secs2time(per_timestamp_time.avg * (len(env) - idx), True))
        logger.log("[{:}]".format(time_string()) +
                   " [{:04d}/{:04d}]".format(idx, len(env)) + " " + need_time)
        # train the same data
        historical_x = future_x.to(args.device)
        historical_y = future_y.to(args.device)
        # build model
        model = get_model(**model_kwargs)
        model = model.to(args.device)
        if idx == 0:
            print(model)
        # build optimizer
        optimizer = torch.optim.Adam(model.parameters(),
                                     lr=args.init_lr,
                                     amsgrad=True)
        lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
            optimizer,
            milestones=[
                int(args.epochs * 0.25),
                int(args.epochs * 0.5),
                int(args.epochs * 0.75),
            ],
            gamma=0.3,
        )
        train_metric = metric_cls(True)
        best_loss, best_param = None, None
        for _iepoch in range(args.epochs):
            preds = model(historical_x)
            optimizer.zero_grad()
            loss = criterion(preds, historical_y)
            loss.backward()
            optimizer.step()
            lr_scheduler.step()
            # save best
            if best_loss is None or best_loss > loss.item():
                best_loss = loss.item()
                best_param = copy.deepcopy(model.state_dict())
        model.load_state_dict(best_param)
        model.analyze_weights()
        with torch.no_grad():
            train_metric(preds, historical_y)
        train_results = train_metric.get_info()

        xmetric = ComposeMetric(metric_cls(True), SaveMetric())
        eval_dataset = torch.utils.data.TensorDataset(future_x.to(args.device),
                                                      future_y.to(args.device))
        eval_loader = torch.utils.data.DataLoader(eval_dataset,
                                                  batch_size=args.batch_size,
                                                  shuffle=False,
                                                  num_workers=0)
        results = basic_eval_fn(eval_loader, model, xmetric, logger)
        log_str = ("[{:}]".format(time_string()) +
                   " [{:04d}/{:04d}]".format(idx, len(env)) +
                   " train-score: {:.5f}, eval-score: {:.5f}".format(
                       train_results["score"], results["score"]))
        logger.log(log_str)

        save_path = logger.path(None) / "{:04d}-{:04d}.pth".format(
            idx, len(env))
        w_containers[idx] = model.get_w_container().no_grad_clone()
        save_checkpoint(
            {
                "model_state_dict": model.state_dict(),
                "model": model,
                "index": idx,
                "timestamp": future_time.item(),
            },
            save_path,
            logger,
        )
        logger.log("")
        per_timestamp_time.update(time.time() - start_time)
        start_time = time.time()

    save_checkpoint(
        {"w_containers": w_containers},
        logger.path(None) / "final-ckp.pth",
        logger,
    )

    logger.log("-" * 200 + "\n")
    logger.close()
示例#21
0
def search_func(
    xloader,
    network,
    criterion,
    scheduler,
    w_optimizer,
    a_optimizer,
    enable_controller,
    algo,
    epoch_str,
    print_freq,
    logger,
):
    data_time, batch_time = AverageMeter(), AverageMeter()
    base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter()
    arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
    end = time.time()
    network.train()
    for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(
        xloader
    ):
        scheduler.update(None, 1.0 * step / len(xloader))
        base_inputs = base_inputs.cuda(non_blocking=True)
        arch_inputs = arch_inputs.cuda(non_blocking=True)
        base_targets = base_targets.cuda(non_blocking=True)
        arch_targets = arch_targets.cuda(non_blocking=True)
        # measure data loading time
        data_time.update(time.time() - end)

        # Update the weights
        network.zero_grad()
        _, logits, _ = network(base_inputs)
        base_loss = criterion(logits, base_targets)
        base_loss.backward()
        w_optimizer.step()
        # record
        base_prec1, base_prec5 = obtain_accuracy(
            logits.data, base_targets.data, topk=(1, 5)
        )
        base_losses.update(base_loss.item(), base_inputs.size(0))
        base_top1.update(base_prec1.item(), base_inputs.size(0))
        base_top5.update(base_prec5.item(), base_inputs.size(0))

        # update the architecture-weight
        network.zero_grad()
        a_optimizer.zero_grad()
        _, logits, log_probs = network(arch_inputs)
        arch_prec1, arch_prec5 = obtain_accuracy(
            logits.data, arch_targets.data, topk=(1, 5)
        )
        if algo == "mask_rl":
            with torch.no_grad():
                RL_BASELINE_EMA.update(arch_prec1.item())
                rl_advantage = arch_prec1 - RL_BASELINE_EMA.value
            rl_log_prob = sum(log_probs)
            arch_loss = -rl_advantage * rl_log_prob
        elif algo == "tas" or algo == "mask_gumbel":
            arch_loss = criterion(logits, arch_targets)
        else:
            raise ValueError("invalid algorightm name: {:}".format(algo))
        if enable_controller:
            arch_loss.backward()
            a_optimizer.step()
        # record
        arch_losses.update(arch_loss.item(), arch_inputs.size(0))
        arch_top1.update(arch_prec1.item(), arch_inputs.size(0))
        arch_top5.update(arch_prec5.item(), arch_inputs.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if step % print_freq == 0 or step + 1 == len(xloader):
            Sstr = (
                "*SEARCH* "
                + time_string()
                + " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader))
            )
            Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
                batch_time=batch_time, data_time=data_time
            )
            Wstr = "Base [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format(
                loss=base_losses, top1=base_top1, top5=base_top5
            )
            Astr = "Arch [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format(
                loss=arch_losses, top1=arch_top1, top5=arch_top5
            )
            logger.log(Sstr + " " + Tstr + " " + Wstr + " " + Astr)
    return (
        base_losses.avg,
        base_top1.avg,
        base_top5.avg,
        arch_losses.avg,
        arch_top1.avg,
        arch_top5.avg,
    )
示例#22
0
def main(args):
    logger, env_info, model_kwargs = lfna_setup(args)

    # check indexes to be evaluated
    to_evaluate_indexes = split_str2indexes(args.srange, env_info["total"],
                                            None)
    logger.log("Evaluate {:}, which has {:} timestamps in total.".format(
        args.srange, len(to_evaluate_indexes)))

    w_container_per_epoch = dict()

    per_timestamp_time, start_time = AverageMeter(), time.time()
    for i, idx in enumerate(to_evaluate_indexes):

        need_time = "Time Left: {:}".format(
            convert_secs2time(
                per_timestamp_time.avg * (len(to_evaluate_indexes) - i), True))
        logger.log("[{:}]".format(time_string()) +
                   " [{:04d}/{:04d}][{:04d}]".format(i, len(
                       to_evaluate_indexes), idx) + " " + need_time)
        # train the same data
        assert idx != 0
        historical_x, historical_y = [], []
        for past_i in range(idx):
            historical_x.append(env_info["{:}-x".format(past_i)])
            historical_y.append(env_info["{:}-y".format(past_i)])
        historical_x, historical_y = torch.cat(historical_x), torch.cat(
            historical_y)
        historical_x, historical_y = subsample(historical_x, historical_y)
        # build model
        model = get_model(dict(model_type="simple_mlp"), **model_kwargs)
        # build optimizer
        optimizer = torch.optim.Adam(model.parameters(),
                                     lr=args.init_lr,
                                     amsgrad=True)
        criterion = torch.nn.MSELoss()
        lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
            optimizer,
            milestones=[
                int(args.epochs * 0.25),
                int(args.epochs * 0.5),
                int(args.epochs * 0.75),
            ],
            gamma=0.3,
        )
        train_metric = MSEMetric()
        best_loss, best_param = None, None
        for _iepoch in range(args.epochs):
            preds = model(historical_x)
            optimizer.zero_grad()
            loss = criterion(preds, historical_y)
            loss.backward()
            optimizer.step()
            lr_scheduler.step()
            # save best
            if best_loss is None or best_loss > loss.item():
                best_loss = loss.item()
                best_param = copy.deepcopy(model.state_dict())
        model.load_state_dict(best_param)
        with torch.no_grad():
            train_metric(preds, historical_y)
        train_results = train_metric.get_info()

        metric = ComposeMetric(MSEMetric(), SaveMetric())
        eval_dataset = torch.utils.data.TensorDataset(
            env_info["{:}-x".format(idx)], env_info["{:}-y".format(idx)])
        eval_loader = torch.utils.data.DataLoader(eval_dataset,
                                                  batch_size=args.batch_size,
                                                  shuffle=False,
                                                  num_workers=0)
        results = basic_eval_fn(eval_loader, model, metric, logger)
        log_str = ("[{:}]".format(time_string()) +
                   " [{:04d}/{:04d}]".format(idx, env_info["total"]) +
                   " train-mse: {:.5f}, eval-mse: {:.5f}".format(
                       train_results["mse"], results["mse"]))
        logger.log(log_str)

        save_path = logger.path(None) / "{:04d}-{:04d}.pth".format(
            idx, env_info["total"])
        w_container_per_epoch[idx] = model.get_w_container().no_grad_clone()
        save_checkpoint(
            {
                "model_state_dict": model.state_dict(),
                "model": model,
                "index": idx,
                "timestamp": env_info["{:}-timestamp".format(idx)],
            },
            save_path,
            logger,
        )
        logger.log("")
        per_timestamp_time.update(time.time() - start_time)
        start_time = time.time()

    save_checkpoint(
        {"w_container_per_epoch": w_container_per_epoch},
        logger.path(None) / "final-ckp.pth",
        logger,
    )
    logger.log("-" * 200 + "\n")
    logger.close()
示例#23
0
def main(args):
    assert torch.cuda.is_available(), "CUDA is not available."
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True
    # torch.backends.cudnn.deterministic = True
    # torch.set_num_threads(args.workers)

    prepare_seed(args.rand_seed)
    logger = prepare_logger(args)

    train_data, valid_data, xshape, class_num = get_datasets(
        args.dataset, args.data_path, args.cutout_length)

    valid_use = False
    user_data = np.load(
        '../../exps/NAS-Bench-201-algos/Dirichlet_100000000_Use_valid_{}_{}_non_iid_setting.npy'
        .format(valid_use, args.dataset),
        allow_pickle=True).item()
    train_loader_list = {}
    valid_loader_list = {}
    # alignment_loader = torch.utils.data.DataLoader(
    #     DatasetSplit(train_data, np.random.choice(list(range(len(train_data))), 5000)),
    #     batch_size=args.batch_size,
    #     shuffle=True,
    #     num_workers=args.workers,
    #     pin_memory=True,
    # )

    alignment_loader = torch.utils.data.DataLoader(
        DatasetSplit(train_data, user_data['public']),
        batch_size=args.batch_size,
        shuffle=True,
        num_workers=args.workers,
        pin_memory=True,
    )
    user_num = len(user_data) - 1

    for user in range(user_num):
        train_loader_list[user] = torch.utils.data.DataLoader(
            DatasetSplit(train_data,
                         user_data[user]['train'] + user_data[user]['test']),
            batch_size=args.batch_size,
            shuffle=True,
            drop_last=True,
            num_workers=args.workers,
            pin_memory=True,
        )
        valid_loader_list[user] = torch.utils.data.DataLoader(
            DatasetSplit(valid_data, user_data[user]['valid']),
            batch_size=args.batch_size,
            shuffle=True,
            drop_last=True,
            num_workers=args.workers,
            pin_memory=True,
        )

    # train_loader = torch.utils.data.DataLoader(
    #     train_data,
    #     batch_size=args.batch_size,
    #     shuffle=True,
    #     num_workers=args.workers,
    #     pin_memory=True,
    # )
    # valid_loader = torch.utils.data.DataLoader(
    #     valid_data,
    #     batch_size=args.batch_size,
    #     shuffle=False,
    #     num_workers=args.workers,
    #     pin_memory=True,
    # )

    # get configures
    model_config = load_config(args.model_config, {"class_num": class_num},
                               logger)
    optim_config = load_config(args.optim_config, {"class_num": class_num},
                               logger)

    if args.model_source == "normal":
        base_model = obtain_model(model_config)
    elif args.model_source == "nas":
        base_model = obtain_nas_infer_model(model_config,
                                            args.extra_model_path)
    elif args.model_source == "autodl-searched":
        import ast
        import re
        file_proposal = args.extra_model_path
        genotype_list = {}

        if args.extra_model_path in Networks:
            for user in range(user_num):
                genotype_list[user] = Networks[args.extra_model_path]
        else:
            user_list = {}
            user = 0
            for line in open(file_proposal):
                if "<<<--->>>" in line:
                    tep_dict = ast.literal_eval(
                        re.search('({.+})', line).group(0))
                    count = 0
                    for j in tep_dict['normal']:
                        for k in j:
                            if 'skip_connect' in k[0]:
                                count += 1
                    if count == 2:
                        # if user%5 not in genotype_list:
                        # logger.log("user{}'s architecture is chosen from epoch {}".format(user%5, user//5))
                        genotype_list[user % 5] = tep_dict
                        user_list[user % 5] = user // 5
                    user += 1

            for user in user_list:
                logger.log(
                    "user{}'s architecture is chosen from epoch {}".format(
                        user, user_list[user]))
        logger.log(genotype_list)

        base_model_list = {}
        for user in range(user_num):
            base_model_list[user] = obtain_model(model_config,
                                                 genotype_list[3])
            flop, param = get_model_infos(base_model_list[user], xshape)
            logger.log("The model of User {}: parm: {}, Flops: {}.".format(
                user, param, flop))
            wandb.watch(base_model_list[user])

        # base_model = obtain_model(model_config, args.extra_model_path)
    elif args.model_source == "Densenet":
        base_model_list = {}
        for user in range(user_num):
            base_model_list[user] = torch.hub.load('pytorch/vision:v0.10.0',
                                                   'densenet121',
                                                   pretrained=False)
            flop, param = get_model_infos(base_model_list[user], xshape)
            logger.log("The model of User {}: parm: {}, Flops: {}.".format(
                user, param, flop))
    else:
        base_model_list = {}
        for user in range(user_num):
            base_model_list[user], _, __ = create_cnn_model(
                args.model_source,
                args.dataset,
                optim_config.epochs + optim_config.warmup,
                None,
                use_cuda=1)
            flop, param = get_model_infos(base_model_list[user], xshape)
            logger.log("The model of User {}: parm: {}, Flops: {}.".format(
                user, param, flop))

        # raise ValueError("invalid model-source : {:}".format(args.model_source))

    optimizer_list = {}
    scheduler_list = {}
    criterion_list = {}
    for user in range(user_num):
        flop, param = get_model_infos(base_model_list[user], xshape)
        # logger.log("model ====>>>>:\n{:}".format(base_model_list[user]))
        # logger.log("model information : {:}".format(base_model_list[user].get_message()))
        logger.log("-" * 50)
        logger.log("Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G".format(
            param, flop, flop / 1e3))
        logger.log("-" * 50)
        optimizer_list[user], scheduler_list[user], criterion_list[
            user] = get_optim_scheduler(base_model_list[user].parameters(),
                                        optim_config)

        # logger.log("User{}, train_data : {:}".format(user, train_data[user]))
        # logger.log("User{}, valid_data : {:}".format(user, valid_data[user]))
        # optimizer, scheduler, criterion = get_optim_scheduler(
        #     base_model.parameters(), optim_config
        # )
        logger.log("User{}, optimizer  : {:}".format(user,
                                                     optimizer_list[user]))
        logger.log("User{}, scheduler  : {:}".format(user,
                                                     scheduler_list[user]))
        logger.log("User{}, criterion  : {:}".format(user,
                                                     criterion_list[user]))
        # base_model_list[user], criterion_list[user] = torch.nn.DataParallel(base_model[user]).cuda(), criterion_list[user].cuda()
        criterion_list[user] = criterion_list[user].cuda()
        base_model_list[user] = base_model_list[user].cuda()

    last_info, model_base_path, model_best_path = (
        logger.path("info"),
        logger.path("model"),
        logger.path("best"),
    )

    if last_info.exists():  # automatically resume from previous checkpoint
        logger.log("=> loading checkpoint of the last-info '{:}' start".format(
            last_info))
        last_infox = torch.load(last_info)
        start_epoch = last_infox["epoch"] + 1
        last_checkpoint_path = last_infox["last_checkpoint"]
        if not last_checkpoint_path.exists():
            logger.log("Does not find {:}, try another path".format(
                last_checkpoint_path))
            last_checkpoint_path = (last_info.parent /
                                    last_checkpoint_path.parent.name /
                                    last_checkpoint_path.name)
        checkpoint = torch.load(last_checkpoint_path)

        for user in base_model_list:
            base_model_list[user].load_state_dict(
                checkpoint["model_{}".format(user)])
            optimizer_list[user].load_state_dict(
                checkpoint["optimizer_{}".format(user)])
            scheduler_list[user].load_state_dict(
                checkpoint["scheduler_{}".format(user)])
        valid_accuracies = checkpoint["valid_accuracies"]
        logger.log(
            "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch."
            .format(last_info, start_epoch))
        del (checkpoint)
    elif args.resume is not None:
        assert Path(
            args.resume).exists(), "Can not find the resume file : {:}".format(
                args.resume)
        checkpoint = torch.load(args.resume)
        start_epoch = checkpoint["epoch"] + 1
        for user in base_model_list:
            base_model_list[user].load_state_dict(
                checkpoint["model_{}".format(user)])
            optimizer_list[user].load_state_dict(
                checkpoint["optimizer_{}".format(user)])
            scheduler_list[user].load_state_dict(
                checkpoint["scheduler_{}".format(user)])
        valid_accuracies = checkpoint["valid_accuracies"]
        logger.log(
            "=> loading checkpoint from '{:}' start with {:}-th epoch.".format(
                args.resume, start_epoch))
    # elif args.init_model is not None:
    #     assert Path(
    #         args.init_model
    #     ).exists(), "Can not find the initialization file : {:}".format(args.init_model)
    #     checkpoint = torch.load(args.init_model)
    #     base_model.load_state_dict(checkpoint["base-model"])
    #     start_epoch, valid_accuracies, max_bytes = 0, {"best": -1}, {}
    #     logger.log("=> initialize the model from {:}".format(args.init_model))
    else:
        logger.log("=> do not find the last-info file : {:}".format(last_info))
        start_epoch, valid_accuracies, max_bytes = 0, {"best": -1}, {}
    train_func, valid_func = get_procedures(args.procedure)
    total_epoch = optim_config.epochs + optim_config.warmup
    local_epoch = args.local_epoch
    # Main Training and Evaluation Loop
    start_time = time.time()
    epoch_time = AverageMeter()
    for epoch in range(start_epoch, total_epoch):

        epoch_str = "epoch={:03d}/{:03d}".format(epoch, total_epoch)

        test_accuracy1_list = []
        test_accuracy5_list = []
        for user in scheduler_list:
            if (epoch % 1 == 0) or (epoch + 1 == total_epoch):
                logger.log("-" * 150)
                valid_loss, valid_acc1, valid_acc5 = valid_func(
                    valid_loader_list[user],
                    base_model_list[user],
                    criterion_list[user],
                    optim_config,
                    epoch_str,
                    args.print_freq_eval,
                    logger,
                )

                logger.log(
                    "Important: User {}: ***{:s}*** VALID [{:}] loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f} | Best-Valid-Acc@1={:.2f}, Error@1={:.2f}"
                    .format(
                        user,
                        time_string(),
                        epoch_str,
                        valid_loss,
                        valid_acc1,
                        valid_acc5,
                        valid_accuracies["best"],
                        100 - valid_accuracies["best"],
                    ))

                test_accuracy1_list.append(valid_acc1)
                test_accuracy5_list.append(valid_acc5)

        if args.logits_aggregation:
            Logits_aggregation_func(alignment_loader, base_model_list,
                                    optimizer_list, logger, 3)

        else:
            tep_list = [
                model.state_dict() for model in base_model_list.values()
            ]
            global_state = average_weights(tep_list)
            del (tep_list)
            for one in base_model_list:
                base_model_list[one].load_state_dict(global_state)

        for user in scheduler_list:
            scheduler_list[user].update(epoch, 0.0)
        need_time = "Time Left: {:}".format(
            convert_secs2time(epoch_time.avg * (total_epoch - epoch), True))
        LRs = scheduler_list[0].get_lr()
        find_best = False
        # set-up drop-out ratio
        # if hasattr(base_model, "update_drop_path"):
        #     base_model.update_drop_path(
        #         model_config.drop_path_prob * epoch / total_epoch
        #     )
        logger.log(
            "\n***{:s}*** start {:s} {:s}, LR=[{:.12f} ~ {:.12f}], scheduler={:}"
            .format(time_string(), epoch_str, need_time, min(LRs), max(LRs),
                    scheduler_list[0]))

        # train for one epoch

        for user in train_loader_list:
            train_loss, train_acc1, train_acc5 = train_func(
                train_loader_list[user], base_model_list[user],
                criterion_list[user], scheduler_list[user],
                optimizer_list[user], optim_config, epoch_str, args.print_freq,
                logger, local_epoch)
            # log the results
            logger.log(
                "User {} ***{:s}*** TRAIN [{:}] loss = {:.6f}, accuracy-1 = {:.2f}, accuracy-5 = {:.2f}"
                .format(user, time_string(), epoch_str, train_loss, train_acc1,
                        train_acc5))

            info_dict = {
                "{}user_train_loss".format(user): train_loss,
                "{}user_train_top1".format(user): train_acc1,
                "{}user_train_top5".format(user): train_acc5,
                "{}user_valid_loss".format(user): valid_loss,
                "{}user_valid_top1".format(user): valid_acc1,
                "{}user_valid_top5".format(user): valid_acc5,
                "epoch": epoch
            }
            wandb.log(info_dict)

        if np.average(test_accuracy1_list) > valid_accuracies["best"]:
            valid_accuracies["best"] = np.average(test_accuracy1_list)
            find_best = True
            logger.log(
                "Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}."
                .format(
                    epoch,
                    valid_acc1,
                    valid_acc5,
                    100 - valid_acc1,
                    100 - valid_acc5,
                    model_best_path,
                ))

        valid_accuracies[epoch] = np.average(test_accuracy1_list)
        info_dict = {
            "average_valid_top1_acc": np.average(test_accuracy1_list),
            "average_valid_top5_acc": np.average(test_accuracy5_list),
            "epoch": epoch
        }
        wandb.log(info_dict)

        # num_bytes = (
        #     torch.cuda.max_memory_cached(next(network.parameters()).device) * 1.0
        # )
        # logger.log(
        #     "[GPU-Memory-Usage on {:} is {:} bytes, {:.2f} KB, {:.2f} MB, {:.2f} GB.]".format(
        #         next(network.parameters()).device,
        #         int(num_bytes),
        #         num_bytes / 1e3,
        #         num_bytes / 1e6,
        #         num_bytes / 1e9,
        #     )
        # )
        # max_bytes[epoch] = num_bytes
        if epoch % 10 == 0:
            torch.cuda.empty_cache()

        # save checkpoint

        checkpoint_dict = {
            "epoch": epoch,
            "args": deepcopy(args),
            "FLOP": flop,
            "PARAM": param,
            "model_source": args.model_source,
            "valid_accuracies": deepcopy(valid_accuracies),
            "model-config": model_config._asdict(),
            "optim-config": optim_config._asdict()
        }
        for user in base_model_list:
            checkpoint_dict["model_{}".format(
                user)] = base_model_list[user].state_dict()
            checkpoint_dict["scheduler_{}".format(
                user)] = scheduler_list[user].state_dict()
            checkpoint_dict["optimizer_{}".format(
                user)] = optimizer_list[user].state_dict()

        save_path = save_checkpoint(checkpoint_dict, model_base_path, logger)

        del (checkpoint_dict)

        if find_best:
            copy_checkpoint(model_base_path, model_best_path, logger)

        last_info = save_checkpoint(
            {
                "epoch": epoch,
                "args": deepcopy(args),
                "last_checkpoint": save_path,
            },
            logger.path("info"),
            logger,
        )

        # measure elapsed time
        epoch_time.update(time.time() - start_time)
        start_time = time.time()

    logger.log("\n" + "-" * 200)
    # logger.log(
    #     "Finish training/validation in {:} with Max-GPU-Memory of {:.2f} MB, and save final checkpoint into {:}".format(
    #         convert_secs2time(epoch_time.sum, True),
    #         max(v for k, v in max_bytes.items()) / 1e6,
    #         logger.path("info"),
    #     )
    # )
    logger.log("-" * 200 + "\n")
    logger.close()