resultPath = os.path.split(FLAGS.model_path)[0] resultPath = os.path.join(resultPath, 'detections.txt') resultFile = open(resultPath, 'w') firstStart = time.time() cont = testFile.readlines() for i in range(0, len(cont)): print("detecting image: {}".format(cont[i].rstrip())) imgPath = imgsPath + cont[i].rstrip() + '.jpg' try: image = Image.open(imgPath) except: print('Image Open Error') out_boxes, out_scores, out_classes = yolo.get_boxes(image) if visualise: r_image = yolo.detect_image(image) r_image.show() for idx, c in reversed(list(enumerate(out_classes))): predicted_class = 'plum' box = out_boxes[idx] score = out_scores[idx] top, left, bottom, right = box #left,top,right,bottom = x0,y0,x1,y1 top = max(0, np.floor(top + 0.5).astype('int32')) left = max(0, np.floor(left + 0.5).astype('int32')) bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32')) right = min(image.size[0], np.floor(right + 0.5).astype('int32'))
#-------------------------------------# # 对单张图片进行预测 #-------------------------------------# from yolo import YOLO from PIL import Image import numpy as np yolo = YOLO() while True: #img = input('Input image filename:') img = '../input/global-wheat-detection/test/cc3532ff6.jpg' try: image = Image.open(img) except: print('Open Error! Try again!') continue else: boxes = yolo.get_boxes(image) #r_image = yolo.detect_image(image) for i in boxes: print(i) break