rval, frame = vc.read()

        else:
            rval = False

        while rval:
            while frame.shape[0] < arrows.shape[0] or frame.shape[
                    1] < arrows.shape[1]:
                scale_percent = 30  # percent of original size
                width = int(arrows.shape[1] * scale_percent / 100)
                height = int(arrows.shape[0] * scale_percent / 100)
                dim = (width, height)
                arrows = cv2.resize(arrows, dim, interpolation=cv2.INTER_AREA)
                sofa = cv2.resize(sofa, dim, interpolation=cv2.INTER_AREA)

            width, height, inference_time, results = yolo.inference(frame)
            for detection in results:
                id, name, confidence, x, y, w, h = detection
                cx = x + (w / 2)
                cy = y + (h / 2)

                # draw a bounding box rectangle and label on the image
                color = (0, 255, 255)
                cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
                x_offset = x
                y_offset = y
                if x_offset < 0:
                    x_offset = 0
                elif x_offset + arrows.shape[1] > frame.shape[1]:
                    x_offset = frame.shape[1] - arrows.shape[1]
                if y_offset < 0:
def press():
    new_model = load_model('Letter_Model_V3_999_1')
    alph = 'ABCDEFGHIJKLMNOPQRSTUVWXY'
    alph_dict = {}
    for i, n in enumerate(alph):
        alph_dict.update({i: n})

    camera = cv2.VideoCapture(0)
    #cv2.namedWindow("test")
    img_counter = 0
    List_alph = [i for i in alph]
    letter = random.choice(List_alph)
    while True:
        ret, frame = camera.read()
        if not ret:
            print("failed to grab frame")
            break
        color = (0, 255, 255)
        cv2.putText(frame, 'Please try to sign the letter: ' + letter,
                    (20, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
        cv2.imshow("Gesture Detector", frame)

        k = cv2.waitKey(1)
        if k % 256 == 27:
            # ESC pressed
            print("Escape hit, closing...")
            break
        elif k % 256 == 32:
            # SPACE pressed
            img_name = "opencv_frame_{}.png".format(img_counter)
            print("{} written!".format(img_name))
            x = frame
            img_counter += 1

            yolo = YOLO(
                "/Users/Denny/Desktop/Hack_The_Northeast/yolo-hand-detection/models/cross-hands.cfg",
                "/Users/Denny/Desktop/Hack_The_Northeast/yolo-hand-detection/models/cross-hands.weights",
                ["hand"])
            width, height, inference_time, results = yolo.inference(x)
            frame = x
            for detection in results:
                id, name, confidence, x, y, w, h = detection
                cx = x + (w / 2)
                cy = y + (h / 2)
                crop_img = frame[y - 50:y + h + 50, x - 50:x + w + 50]
                #cv2.waitKey(0)
                im = Image.fromarray(crop_img)
                im.save("your_file.png")
                im = cv2.imread('your_file.png', 0)
                new_img = cv2.resize(im, (28, 28))
                cv2.imshow("preview", new_img)
                cv2.waitKey(0)
                the_class = new_model.predict_classes(
                    new_img.reshape(1, 28, 28, 1))
                Answer = alph_dict[the_class[0]]
                # draw a bounding box rectangle and label on the image
                color = (0, 255, 255)

                #text = "%s (%s)" % (name, round(confidence, 2))
                if Answer == letter:
                    cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0),
                                  2)
                    text = 'Correct Answer for: ' + Answer
                    cv2.putText(frame, text, (x, y - 5),
                                cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
                else:
                    cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255),
                                  2)
                    text = 'Try again!'
                    cv2.putText(frame, text, (x, y - 5),
                                cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)

            cv2.imshow("preview", frame)
#            if Answer==tkvar:
#                cv2.putText(frame, "Worked well", (x, y), cv2.FONT_HERSHEY_SIMPLEX,
#                            0.5, color, 2)
#            else:
#                cv2.putText(frame, "Try again", (x, y), cv2.FONT_HERSHEY_SIMPLEX,
#                            0.5, color, 2)
    camera.release()

    cv2.destroyAllWindows()
示例#3
0
def scrollV(cap, network, device, size, confidence):
    if network == "normal":
        print("loading yolo...")
        yolo = YOLO("models/cross-hands.cfg", "models/cross-hands.weights",
                    ["hand"])
    elif network == "prn":
        print("loading yolo-tiny-prn...")
        yolo = YOLO("models/cross-hands-tiny-prn.cfg",
                    "models/cross-hands-tiny-prn.weights", ["hand"])
    else:
        print("loading yolo-tiny...")
        yolo = YOLO("models/cross-hands-tiny.cfg",
                    "models/cross-hands-tiny.weights", ["hand"])

    yolo.size = size
    yolo.confidence = confidence

    cnt = 0
    curr = 0
    prev = 0
    exit = 0

    rval, frame = cap.read()

    while True:
        width, height, inference_time, results = yolo.inference(frame)

        if len(results) == 1:
            exit = 0
            cnt += 1

            id, name, confidence, x, y, w, h = results[0]
            cx = x + (w // 2)
            cy = y + (h // 2)

            if cnt <= 5:
                curr = cy

            color = (0, 255, 255)
            cv2.circle(frame, (cx, cy), 10, color, -1)
            #print("Cy: ", cy)

            if cnt % 10 == 0 and cnt > 5:
                prev = curr
                curr = cy
                #print("Prev: ",prev)
                #print("Curr: ", curr)
                clicks = prev - curr
                #print(clicks)
                #if clicks>30 and clicks<170:
                clicks = clicks // 2

                if abs(clicks) > 10:
                    pyautogui.scroll(clicks)

        else:
            exit += 1
            if exit > 50:
                print(exit)
                break

        cv2.imshow("preview", frame)
        rval, frame = cap.read()

        key = cv2.waitKey(1)
        if key == 27:  # exit on ESC
            break

    cv2.destroyWindow("preview")
示例#4
0
def reading_video(filename):
    ap = argparse.ArgumentParser()
    ap.add_argument('-n',
                    '--network',
                    default="normal",
                    help='Network Type: normal / tiny / prn / v4-tiny')
    ap.add_argument('-d', '--device', default=0, help='Device to use')
    ap.add_argument('-v',
                    '--videos',
                    default="videos",
                    help='Path to videos or video file')
    ap.add_argument('-s', '--size', default=416, help='Size for yolo')
    ap.add_argument('-c',
                    '--confidence',
                    default=0.2,
                    help='Confidence for yolo')
    ap.add_argument("-f",
                    "--fff",
                    help="a dummy argument to fool ipython",
                    default="1")
    args = ap.parse_args()
    if args.network == "normal":
        print("loading yolo...")
        yolo = YOLO("models/cross-hands.cfg", "models/cross-hands.weights",
                    ["hand"])
    elif args.network == "prn":
        print("loading yolo-tiny-prn...")
        yolo = YOLO("models/cross-hands-tiny-prn.cfg",
                    "models/cross-hands-tiny-prn.weights", ["hand"])
    elif args.network == "v4-tiny":
        print("loading yolov4-tiny-prn...")
        yolo = YOLO("models/cross-hands-yolov4-tiny.cfg",
                    "models/cross-hands-yolov4-tiny.weights", ["hand"])
    else:
        print("loading yolo-tiny...")
        yolo = YOLO("models/cross-hands-tiny.cfg",
                    "models/cross-hands-tiny.weights", ["hand"])

    yolo.size = int(args.size)
    yolo.confidence = float(args.confidence)

    # opening a window called preview
    cv2.namedWindow("preview")
    # to open and capture frames from video
    vc = cv2.VideoCapture(filename)
    if vc.isOpened():  # try to get the first frame
        rval, frame = vc.read()
        # to get the first frame

    else:
        # some error causes the video to not open
        rval = False
    while (vc.isOpened()):
        # Applying YOLO on the frames
        width, height, inference_time, results = yolo.inference(frame)
        for detection in results:
            id, name, confidence, x, y, w, h = detection
            cx = x + (w / 2)
            cy = y + (h / 2)
            # draw a bounding box rectangle and label on the image
            color = (0, 255, 255)
            cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
            text = "%s (%s)" % (name, round(confidence, 2))
            # put a text on the detected hand with the confidence ratio
            cv2.putText(frame, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                        color, 2)
            cv2.imshow("preview", frame)
            rval, frame = vc.read()
            # to close the window we need to click on the ESC button
            key = cv2.waitKey(20)
            if key == 27:  # exit on ESC
                break
    cv2.destroyWindow("preview")
    vc.release()