with tf.Session(config=config) as sess: init_op = tf.global_variables_initializer() model = sess.run(init_op) if os.path.isfile(os.getcwd() + "/" + cfg.weights_dir + "/checkpoint"): saver.restore(sess, model_file) print("Restored model") yolo.set_training(False) anchors = np.reshape(np.array(cfg.anchors), [-1, 2]) images = load_file(sys.argv[1:]) #normalise data between 0 and 1 imgs = (np.array([row[0] for row in images])/255) boxes = sess.run(yolo.output, feed_dict={ yolo.x: imgs, yolo.anchors: anchors, }) proc_boxes = yolo.convert_net_to_bb(boxes, filter_top=True) for box in proc_boxes: cls = yolo.names[int(box[0])] hex = cls.encode('utf-8').hex()[0:6] color = tuple(int(hex[k:k+2], 16) for k in (0, 2 ,4)) print(cls, box[1], box[2], box[3], box[4], box[5])
if len(v_labels) == 0: continue res, correct, iou = sess.run( [yolo.output, yolo.matches, yolo.best_iou], feed_dict={ yolo.train_bounding_boxes: v_labels, yolo.train_object_recognition: v_obj_detection, yolo.x: v_imgs, yolo.anchors: anchors, yolo.iou_threshold: iou_threshold, yolo.object_detection_threshold: confidence_threshold }) labels = yolo.convert_net_to_bb(res, filter_top=True)[0] #v_obj_detection = np.zeros_like(v_obj_detection) o_img, o_h, o_w, = res.shape[:3] img = o_img - 1 if one_class: v_obj_detection = np.zeros_like(v_obj_detection) while img >= 0: h = o_h - 1 while h >= 0: w = o_w - 1 while w >= 0: