示例#1
0
                           batch_size=batch_size,
                           shuffle=True,
                           drop_last=True,
                           num_workers=8)

test_dset = VOCDetection(root=data_root, split='test')
test_dloader = DataLoader(test_dset,
                          batch_size=batch_size,
                          shuffle=False,
                          drop_last=False,
                          num_workers=8)

model = Yolo(grid_size, num_boxes, num_classes)
model = model.to(device)
pretrained_weights = torch.load(pretrained_backbone_path)
model.load_state_dict(pretrained_weights)
print('loaded pretrained weight')

# Freeze the backbone network.
model.features.requires_grad_(False)
model_params = [v for v in model.parameters() if v.requires_grad is True]
optimizer = optim.SGD(model_params, lr=lr, momentum=0.9, weight_decay=5e-4)
compute_loss = Loss(grid_size, num_boxes, num_classes)

# Load the last checkpoint if exits.
ckpt_path = os.path.join(ckpt_dir, 'last.pth')

if os.path.exists(ckpt_path):
    ckpt = torch.load(ckpt_path)
    model.load_state_dict(ckpt['model'])
    optimizer.load_state_dict(ckpt['optimizer'])
示例#2
0
    args = parser.parse_args()
    print(args)

    device = torch.device(
        'cuda' if args.use_gpu and torch.cuda.is_available() else 'cpu')

    if not os.path.exists(args.output_path):
        os.makedirs(args.output_path)

    # Initiate model
    model = Yolo(num_classes=20).to(device)

    # If specified we start from checkpoint
    if args.pretrained_weights:
        if args.pretrained_weights.endswith('.pth'):
            model.load_state_dict(torch.load(args.pretrained_weights))
        else:
            model.load_darknet_weights(args.pretrained_weights)

    # Get dataloader
    train_dataset = VOCDetection(args.train_path, args.img_size)
    train_loader = DataLoader(train_dataset,
                              batch_size=args.batch_size,
                              shuffle=True,
                              num_workers=args.num_workers,
                              collate_fn=train_dataset.collate_fn)
    val_dataset = VOCDetection(args.val_path, args.img_size)
    val_loader = DataLoader(val_dataset,
                            batch_size=args.batch_size,
                            shuffle=False,
                            num_workers=args.num_workers,