filename = lambda ru: os.path.join(basedir,'all-results-0-%s-%s.pkl'%(ru[0],ru[1])) data = {'%s-%s'%(r,u):cPickle.load(open(filename((r,u)),'rb')) for r in r_schema for u in u_schema} formats = dict(zip(u_schema,['k','k--','k-.'])) sn = lambda alpha: (1-alpha)/alpha if alpha > 0 else 0 mixing_fractions = np.linspace(0,1,num=11) accuracies = {} fig,axs = plt.subplots(ncols=len(r_schema)) for reward,panel in zip(r_schema,axs): for stimulus in u_schema: accuracy = postdoc.accuracy_figure(data['%s-%s'%(reward,stimulus)],savename=None) panel.plot(artist.smooth(accuracy,beta=2),formats[stimulus],linewidth=2,label=artist.format(stimulus.capitalize())) accuracies['%s-%s'%(reward,stimulus)] = accuracy artist.adjust_spines(panel) panel.set_xlabel(r'\Large $\mathrm{\frac{Signal}{Noise}}$') panel.set_ylabel(r'\Large \textbf{%s, } $\mathrm{Accuracy, q\left(\mathbf{v}\right)\Bigg|_{\mathbf{v^0}}} $'%reward.capitalize()) panel.set_ylim((-1,1)) xlabs = [r'\Large $\mathbf{%.02f}$'%alpha for alpha in map(sn,mixing_fractions[:-1])] xlabs[0] = r'\Large $\mathrm{All \; signal}$' xlabs[-1] = r'\Large $\mathrm{All \; noise}$' panel.set_xticklabels(xlabs, rotation='vertical') plt.legend(frameon=False)
''' basedir = '/Volumes/My Book/synchrony-data/2013-12-29-13-26-12' r_schema = ['susceptible','resilient'] u_schema = ['exposure','chronic','cessation'] filename = lambda ru: os.path.join(basedir,'all-results-0-%s-%s.pkl'%(ru[0],ru[1])) data = {'%s-%s'%(r,u):cPickle.load(open(filename((r,u)),'rb')) for r in r_schema for u in u_schema} formats = dict(zip(u_schema,['k','k--','k-.'])) fig,axs = plt.subplots(nrows=1,ncols=2,sharex=True,sharey=True) for reward,ax in zip(r_schema,axs): for stimulus in u_schema: ax.plot(artist.smooth(data['%s-%s'%(reward,stimulus)]['network_stability']),formats[stimulus], linewidth=2,label=artist.format(stimulus.capitalize())) plt.hold(True) ax.annotate(artist.format(reward.capitalize()), xy=(.2, .7), xycoords='axes fraction', horizontalalignment='center', verticalalignment='center') artist.adjust_spines(ax) ax.set_xlabel(artist.format('Time')) ax.set_ylabel(r'\Large $E\left(\mathbf{v}\right)$') plt.legend(frameon=False) plt.tight_layout() plt.show()