def zad_3(): n = 5 solutions = [] primes = Modular.nPrime(n) ran = range(1, 2048) for i in range(1, n + 1): solutions.append(Modular.ModuloEquatation(1, i, primes[i - 1], ran)) base = set(solutions[0]) for i in range(1, n): B = set(solutions[i]) base = base.intersection(B) x = min(base) print(x) is_prime = Modular.is_prime(x) print("is prime:", is_prime) result1 = Modular.tau(x) print(result1) result2 = Modular.phi(x) print(result2) result3 = Modular.jota(x) print(result3) result4 = Modular.kanon(x) print(result4)
def zad_2(): base = 2018 power = 2018 mod = pow(2, 32) - 1 a = Modular.pow_modulo(base, power, mod) t1 = int(pow(2, 16) - 1) result1 = a % t1 print(" a mod( 2^16 -1)") print(result1) result2 = Modular.tau(a) print(" tau(a)") print(result2) result3 = Modular.jota(a) print(" jota(a)") print(result3) result4 = Modular.nwd([a, t1]) print(" nwd(a, 2^16 -1)") print(result4) result5 = Modular.nww([a, t1]) print(" nww(a, 2^16 -1)") print(result5) result61, result62 = Modular.pi_from_probability(a) print(" pi(a)") print(result61) print(result62) result7 = Modular.phi_by_kanon(a) print(" euler(a)") print(result7) result8 = Modular.is_prime(a) t2 = Modular.kanon(a) print(" zad2.1") print(result8) print(min(t2)) result9 = Modular.nfermat(a) print(" zad2.2") print(result9) print(t2)
def test_jota_negative(self): expected = 3 a = -5 result = Modular.jota(a) self.assertEquals(expected, result)
def test_jota(self): expected = 1 a = 0 result = Modular.jota(a) self.assertEquals(expected, result)