def zad_2(): base = 2018 power = 2018 mod = pow(2, 32) - 1 a = Modular.pow_modulo(base, power, mod) t1 = int(pow(2, 16) - 1) result1 = a % t1 print(" a mod( 2^16 -1)") print(result1) result2 = Modular.tau(a) print(" tau(a)") print(result2) result3 = Modular.jota(a) print(" jota(a)") print(result3) result4 = Modular.nwd([a, t1]) print(" nwd(a, 2^16 -1)") print(result4) result5 = Modular.nww([a, t1]) print(" nww(a, 2^16 -1)") print(result5) result61, result62 = Modular.pi_from_probability(a) print(" pi(a)") print(result61) print(result62) result7 = Modular.phi_by_kanon(a) print(" euler(a)") print(result7) result8 = Modular.is_prime(a) t2 = Modular.kanon(a) print(" zad2.1") print(result8) print(min(t2)) result9 = Modular.nfermat(a) print(" zad2.2") print(result9) print(t2)
def test_nFermat_non(self): expected = None a = 4 self.assertEquals(expected, Modular.nfermat(a))
def test_nFermat5(self): expected = 5 a = 4294967297 self.assertEquals(expected, Modular.nfermat(a))
def test_nFermat0(self): expected = 0 a = 3 self.assertEquals(expected, Modular.nfermat(a))