Example #1
0
def zad_2():
    base = 2018
    power = 2018
    mod = pow(2, 32) - 1

    a = Modular.pow_modulo(base, power, mod)

    t1 = int(pow(2, 16) - 1)
    result1 = a % t1
    print(" a mod( 2^16 -1)")
    print(result1)

    result2 = Modular.tau(a)
    print(" tau(a)")
    print(result2)

    result3 = Modular.jota(a)
    print(" jota(a)")
    print(result3)

    result4 = Modular.nwd([a, t1])
    print(" nwd(a, 2^16 -1)")
    print(result4)

    result5 = Modular.nww([a, t1])
    print(" nww(a, 2^16 -1)")
    print(result5)

    result61, result62 = Modular.pi_from_probability(a)
    print(" pi(a)")
    print(result61)
    print(result62)

    result7 = Modular.phi_by_kanon(a)
    print(" euler(a)")
    print(result7)

    result8 = Modular.is_prime(a)
    t2 = Modular.kanon(a)
    print(" zad2.1")
    print(result8)
    print(min(t2))

    result9 = Modular.nfermat(a)
    print(" zad2.2")
    print(result9)
    print(t2)
Example #2
0
 def test_simple_nww_one_number(self):
     arg = [48]
     result = Modular.nww(arg)
     expected = 48
     self.assertEqual(expected, result)
Example #3
0
 def test_simple_nww_coprime(self):
     arg = [48, 25]
     result = Modular.nww(arg)
     expected = 1200
     self.assertEqual(expected, result)
Example #4
0
 def test_simple_nww(self):
     arg = [12, 3, 48, 7]
     result = Modular.nww(arg)
     expected = 336
     self.assertEqual(expected, result)
Example #5
0
 def test_NWW3(self):
     expected = 72
     a = 24
     b = 18
     self.assertEquals(expected, Modular.nww([a, b]))
Example #6
0
 def test_NWW2(self):
     a = int(math.pow(2, 16) + 1)
     b = int(math.pow(2, 16) - 1)
     expected = a * b
     self.assertEquals(expected, Modular.nww([a, b]))
Example #7
0
 def test_NWW1(self):
     a = 5
     b = 12
     expected = a * b
     self.assertEquals(expected, Modular.nww([a, b]))