def zad_2(): base = 2018 power = 2018 mod = pow(2, 32) - 1 a = Modular.pow_modulo(base, power, mod) t1 = int(pow(2, 16) - 1) result1 = a % t1 print(" a mod( 2^16 -1)") print(result1) result2 = Modular.tau(a) print(" tau(a)") print(result2) result3 = Modular.jota(a) print(" jota(a)") print(result3) result4 = Modular.nwd([a, t1]) print(" nwd(a, 2^16 -1)") print(result4) result5 = Modular.nww([a, t1]) print(" nww(a, 2^16 -1)") print(result5) result61, result62 = Modular.pi_from_probability(a) print(" pi(a)") print(result61) print(result62) result7 = Modular.phi_by_kanon(a) print(" euler(a)") print(result7) result8 = Modular.is_prime(a) t2 = Modular.kanon(a) print(" zad2.1") print(result8) print(min(t2)) result9 = Modular.nfermat(a) print(" zad2.2") print(result9) print(t2)
def test_simple_nww_one_number(self): arg = [48] result = Modular.nww(arg) expected = 48 self.assertEqual(expected, result)
def test_simple_nww_coprime(self): arg = [48, 25] result = Modular.nww(arg) expected = 1200 self.assertEqual(expected, result)
def test_simple_nww(self): arg = [12, 3, 48, 7] result = Modular.nww(arg) expected = 336 self.assertEqual(expected, result)
def test_NWW3(self): expected = 72 a = 24 b = 18 self.assertEquals(expected, Modular.nww([a, b]))
def test_NWW2(self): a = int(math.pow(2, 16) + 1) b = int(math.pow(2, 16) - 1) expected = a * b self.assertEquals(expected, Modular.nww([a, b]))
def test_NWW1(self): a = 5 b = 12 expected = a * b self.assertEquals(expected, Modular.nww([a, b]))