# generate fake data data = recoWithFakes # Create unfolding class m = Unfolder(bkg, mig, eff, truth) m.setUniformPrior() #m.setGaussianPrior() #m.setCurvaturePrior() #m.setFirstDerivativePrior() m.run(data) m.setAlpha(1.0) m.sample(50000) # plot marginal distributions m.plotMarginal("plotMarginal.%s" % extension) # plot correlations #m.plotPairs("pairPlot.%s" % extension) # takes forever m.plotCov("covPlot.%s" % extension) m.plotCorr("corrPlot.%s" % extension) m.plotCorrWithNP("corrPlotWithNP.%s" % extension) m.plotSkewness("skewPlot.%s" % extension) m.plotKurtosis("kurtosisPlot.%s" % extension) m.plotNP("plotNP.%s" % extension) # plot unfolded spectrum m.plotUnfolded("plotUnfolded.%s" % extension) m.plotOnlyUnfolded(1.0, False, "", "plotOnlyUnfolded.%s" % extension)
m.plotUnfolded("plotUnfolded_pseudo.%s" % extension) m.plotOnlyUnfolded(luminosity * 1e-3, True, "fb/GeV", "plotOnlyUnfolded_pseudo.%s" % extension) # plot correlations graphically # it takes forever and it is just pretty # do it only if you really want to see it # I just get annoyed waiting for it ... #m.plotPairs("pairPlot.%s" % extension) # takes forever! suf = "_pseudo" m.plotCov("covPlot%s.%s" % (suf, extension)) m.plotCorr("corrPlot%s.%s" % (suf, extension)) m.plotCorrWithNP("corrPlotWithNP%s.%s" % (suf, extension)) m.plotSkewness("skewPlot%s.%s" % (suf, extension)) m.plotKurtosis("kurtosisPlot%s.%s" % (suf, extension)) m.plotNP("plotNP%s.%s" % (suf, extension)) # for debugging #print "Mean of unfolded data:" #print np.mean(m.trace.Truth, axis = 0) #print "Sqrt of variance of unfolded data:" #print np.std(m.trace.Truth, axis = 0) #print "Skewness of unfolded data:" #print scipy.stats.skew(m.trace.Truth, bias = False) #print "Kurtosis of unfolded data:" #print scipy.stats.kurtosis(m.trace.Truth, bias = False) #print "Print out of the covariance matrix follows:" #print np.cov(m.trace.Truth, rowvar = False) m.plotUnfolded("plotUnfolded_pseudo.%s" % extension)