# generate fake data data = recoWithFakes # Create unfolding class m = Unfolder(bkg, mig, eff, truth) m.setUniformPrior() #m.setGaussianPrior() #m.setCurvaturePrior() #m.setFirstDerivativePrior() m.run(data) m.setAlpha(1.0) m.sample(50000) # plot marginal distributions m.plotMarginal("plotMarginal.%s" % extension) # plot correlations #m.plotPairs("pairPlot.%s" % extension) # takes forever m.plotCov("covPlot.%s" % extension) m.plotCorr("corrPlot.%s" % extension) m.plotCorrWithNP("corrPlotWithNP.%s" % extension) m.plotSkewness("skewPlot.%s" % extension) m.plotKurtosis("kurtosisPlot.%s" % extension) m.plotNP("plotNP.%s" % extension) # plot unfolded spectrum m.plotUnfolded("plotUnfolded.%s" % extension) m.plotOnlyUnfolded(1.0, False, "", "plotOnlyUnfolded.%s" % extension)
#alpha[i], alphaChi2[i], bestAlphaBias[i], bestAlphaBiasStd[i], bestAlphaNormBias[i], bestAlphaNormBiasStd[i] = m.scanAlpha(t_bkg, t_mig, t_eff, 1000, np.arange(0.0, 4e-8, 2e-9), "scanAlpha_%s.%s" % (i, extension), "scanAlpha_%s_chi2.%s" % (i, extension), "scanAlpha_%s_norm.%s" % (i, extension)) # for entropy #alpha[i], alphaChi2[i], bestAlphaBias[i], bestAlphaBiasStd[i], bestAlphaNormBias[i], bestAlphaNormBiasStd[i] = m.scanAlpha(t_bkg, t_mig, t_eff, 1000, np.arange(0.0, 100.0, 4.0), "scanAlpha_%s.%s" % (i, extension), "scanAlpha_%s_chi2.%s" % (i, extension), "scanAlpha_%s_norm.%s" % (i, extension)) print "For configuration '%s': Found alpha = %f with bias chi2 = %f, bias mean = %f, bias std = %f, norm bias = %f, norm bias std = %f" % ( i, alpha[i], alphaChi2[i], bestAlphaBias[i], bestAlphaBiasStd[i], bestAlphaNormBias[i], bestAlphaNormBiasStd[i]) # do the rest with the best alpha from stat. test only m.setAlpha(alpha[""]) m.run(pseudo_data) m.setData(pseudo_data) m.sample(100000) # plot marginal distributions m.plotMarginal("plotMarginal_pseudo.%s" % extension) for i in uncList: m.plotNPMarginal(i, "plotNPMarginal_pseudo_%s.%s" % (i, extension)) # plot unfolded spectrum m.plotUnfolded("plotUnfolded_pseudo.%s" % extension) m.plotOnlyUnfolded(luminosity * 1e-3, True, "fb/GeV", "plotOnlyUnfolded_pseudo.%s" % extension) # plot correlations graphically # it takes forever and it is just pretty # do it only if you really want to see it # I just get annoyed waiting for it ... #m.plotPairs("pairPlot.%s" % extension) # takes forever! suf = "_pseudo"