# generate fake data data = recoWithFakes # Create unfolding class m = Unfolder(bkg, mig, eff, truth) m.setUniformPrior() #m.setGaussianPrior() #m.setCurvaturePrior() #m.setFirstDerivativePrior() m.run(data) m.setAlpha(1.0) m.sample(50000) # plot marginal distributions m.plotMarginal("plotMarginal.%s" % extension) # plot correlations #m.plotPairs("pairPlot.%s" % extension) # takes forever m.plotCov("covPlot.%s" % extension) m.plotCorr("corrPlot.%s" % extension) m.plotCorrWithNP("corrPlotWithNP.%s" % extension) m.plotSkewness("skewPlot.%s" % extension) m.plotKurtosis("kurtosisPlot.%s" % extension) m.plotNP("plotNP.%s" % extension) # plot unfolded spectrum m.plotUnfolded("plotUnfolded.%s" % extension) m.plotOnlyUnfolded(1.0, False, "", "plotOnlyUnfolded.%s" % extension)
bestAlphaNormBias[i], bestAlphaNormBiasStd[i]) # do the rest with the best alpha from stat. test only m.setAlpha(alpha[""]) m.run(pseudo_data) m.setData(pseudo_data) m.sample(100000) # plot marginal distributions m.plotMarginal("plotMarginal_pseudo.%s" % extension) for i in uncList: m.plotNPMarginal(i, "plotNPMarginal_pseudo_%s.%s" % (i, extension)) # plot unfolded spectrum m.plotUnfolded("plotUnfolded_pseudo.%s" % extension) m.plotOnlyUnfolded(luminosity * 1e-3, True, "fb/GeV", "plotOnlyUnfolded_pseudo.%s" % extension) # plot correlations graphically # it takes forever and it is just pretty # do it only if you really want to see it # I just get annoyed waiting for it ... #m.plotPairs("pairPlot.%s" % extension) # takes forever! suf = "_pseudo" m.plotCov("covPlot%s.%s" % (suf, extension)) m.plotCorr("corrPlot%s.%s" % (suf, extension)) m.plotCorrWithNP("corrPlotWithNP%s.%s" % (suf, extension)) m.plotSkewness("skewPlot%s.%s" % (suf, extension)) m.plotKurtosis("kurtosisPlot%s.%s" % (suf, extension))